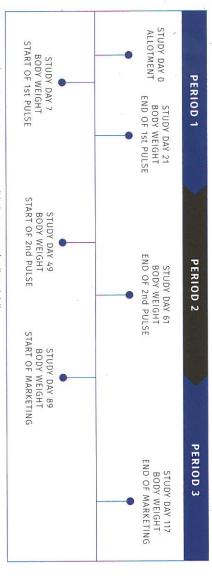
Pig Zero Elanco

Singling him out is never this easy.

Whole-herd health

Feeding Programs¹ Study: Effects of Different Antibiotic

Choleraesuis) was determined using laboratory diagnostics. Confirmation of the disease-causing bacterial agents (Pasteurella multocida, Escherichia coli and Salmonella of swine pneumonia and bacterial enteritis was studied to understand the effects of different antibiotic programs. A commercial population of approximately 1,150 growing pigs averaging approximately 75 lb with a known history


STUDY DESIGN:

- 9-week-old pigs averaging approximately 75 lb were placed and acclimated in the barn for 7 days
- Total pigs: approximately 1,150 pigs (approx. 25 per pen)
- Total pens: 46 single-gender pens of growing pigs were utilized in a randomized complete block design
- Total replicates: 23 per treatment
- Weights were recorded on days 0, 7, 21, 49, 61, 89, and at the time of marketing
- Live weight, average daily gain (ADG), average daily feed intake (ADFI), feed to gain (F:G, calculated), and gain to feed (G:F, calculated) were collected and reported by pen
- Live weight, hot carcass weight (HCW), and carcass yield were collected and reported by pen

TREATMENT GROUPS:

Treatment 1 = Negative control (no medication)

Treatment 2 = Denagard 35 grams/ton + 400 grams/ton CTC from day 7 to 20 and day 49 to 62

Disease scores (coughing, diarrhea, lameness, antibiotic treatments) collected daily.

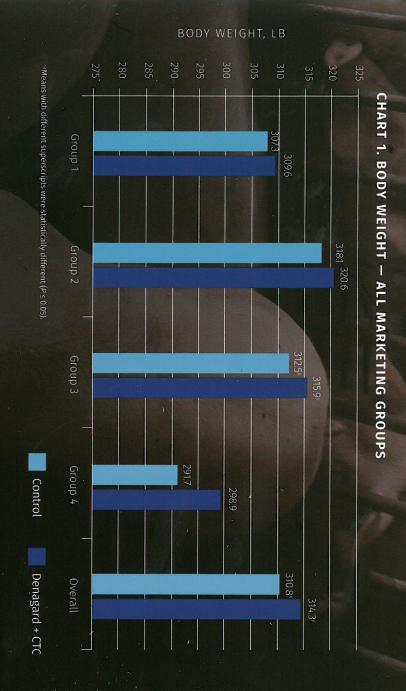
MARKETING STRATEGY:

Each pen was marketed using the same schedule:

- Group 1 (Day 90): Heaviest 12% of pen (i.e., 3 pigs)
- Group 2 (Day 104): Next heaviest 24% or 28% of pen (i.e., 6 or 7 pigs)
- Group 3 (Day 110 or 111): Next heaviest 48% or 52% of pen (i.e., 12 or 13 pigs)
- Group 4 (Day 118): Final 12% of pen (i.e., 3 pigs)

The pigs were weighed the day before shipment for slaughter and transported to a commercial slaughter facility where hot carcass weight (HCW) was recorded

Study Results


TABLE 1. DISEASE INCIDENCE FROM DAY 0 TO STUDY END

	DIETARY	DIETARY TREATMENT		
一个一个人	CONTROL	DENAGARD + CTC	S.E.M.	P-VALUE
NO. OF PENS	23	23		
DRY COUGH, NO. OBS*/PEN	32.09	29.26	1.753	0.10
DIARRHEA, NO. OBS/PEN	0.83	0.39	0.172	0.08
LAMENESS, NO. OBS/PEN	74.43×	63.04 ^y	5.378	<0.001
ANTIBIOTIC TREATMENTS, NO./PEN				
RESPIRATORY	0.83	0.65	0.179	0.50
DIARRHEA	0.13×	0.00v	0.003	<0.001
LAMENESS	23.35×	10.35v	2.244	<0.001

 $^{^{\}rm NM} eans$ with different superscripts were statistically different (P < 0.05) * 08S = observed.

TABLE 2. OVERALL RESULTS SUMMARY — FROM DAY 0 TO STUDY END

	THE RESERVE THE PERSON NAMED IN	からのからなるとことのである。 からのからの		
	DIETAR	DIETARY TREATMENT		
	CONTROL	DENAGARD + CTC	S.E.M.	P-VALUE
NO. OF PENS	23	23		1
START WEIGHT, LBS	75.1	75.0	0.90	0.30
FINAL WEIGHT, LBS	310.8×	314.3	2.60	_0.02
ADG, LBS	2.21×	2.24 ^y	0.021	0.01
ADFI, LBS	6.18×	6.30v	0.093	0.005
F:G	2.80	2.81	0.021	0.51
G:F	0.358	0.357	0.0027	0.49
MORTALITY', % OF PIGS	2.09	1.56		0.51
HCW, LBS	236.7×	239.0	1.96	0.05
CARCASS YIELD, %	76.16	76.04	0.179	0.55

Key Findings

group. Additionally, there was a reduced need to treat respiratory disease, diarrhea and lameness with antibiotics for those in the Denagard + CTC group. Incidence of disease for pens treated with Denagard + CTC was lower than in the control

By controlling on-label pathogens, this study resulted in: Pens treated with Denagard + CTC performed better than the control group.

- 3.5 lb heavier final weight
- 1.4% better ADG
- 1.9% improved ADFI
- 2.3 lb heavier HCW

Whole-herd health

your herd and best for your business isolating the source can be difficult. So, protect the When it comes to treating disease on your operation, population with the proactive choice that's right for

and bacterial pneumonia caused by Pasteurella multocida sensitive to CTC enteritis caused by Escherichia coli and Salmonella Choleraesuis sensitive to CTC, Denagard and chlortetracycline (CTC) control swine dysentery associated with Brachyspira hyodysenteriae susceptible to tiamulin, and treats swine bacterial

against labeled pathogens and enlarge the spectrum of control to certain gramtheir binding sites are different. Together, the two antibiotics increase the activity Denagard and CTC both act at the ribosomal level, inhibiting protein synthesis, but Directive (VFD), using Denagard + CTC does negative bacteria. While using Denagard alone does not require a Veterinary Feed

Are you doing what's right for your herd and best for your business?

Talk to your local Elanco sales representative or technical consultant to learn more about protecting whole-herd health with Denagard.

The label contains complete use information, including cautions and warnings. Always read, understand and follow the label and use directions.

Denagard 10 Premi

пансанонѕ

For control of swine dysentery associated with *Brachyspira hyodysenteriae* susceptible to tiamulin:

- Feed 35 g/tor
- Feed continuously as sole ration
- 2-day withdrawal

For treatment of swine dysentery associated with *Brachyspira hyodysenteriae* susceptible to tiamulin:

- Feed 200 g/ton
- Feed for 14 days for treatment
- 7-day withdrawal

For control of ileitis associated with *Lawsonia intracellularis* susceptible to tiamulin:

- Feed 35 g/ton
- Feed for not less than 10 days
- 2-day withdrawal

Denagard + CTC

ndications:

For the control of swine dysentery associated with Brachyspira hyodysenteriae susceptible to tiamulin and for treatment of swine bacterial enteritis caused by Escherichia coli and Salmonella Choleraesuis sensitive to chlortetracycline and treatment of bacterial pneumonia caused by Pasteurella multocida sensitive to chlortetracycline:

- 35 g/ton of Denagard + 400 g/ton (10 mg/lb body weight in daily divided doses) CTC
- Feed for 14 days
- 2-day withdrawal

Using Denagard alone does not require a Veterinary Feed Directive (VFD). Using Denagard + CTC does require a VFD.

Caution: Federal law restricts medicated feed containing this veterinary feed directive (VFD) drug to use by or on the order of a licensed veterinarian.

Important Safety Information

- Swine being treated with Denagard (tiamulin) should not have access to feeds containing polyether ionophores (e.g. lasalocid, monensin, narasin, salinomycin and semduramicin) as adverse reactions may occur.
- If signs of toxicity occur, discontinue use.
- Withdraw 7 days before slaughter at 200 g/ton and 2 days before slaughter at 35 g/ton.
- · Keep out of reach of children. Avoid contact with skin.
- For use in swine only.
- The effects of tiamulin on swine reproductive performance, pregnancy and lactation have not been determined

Important Safety Information

Swine being treated with Denagard (tiamulin) should not have access to feeds containing polyether ionophores (e.g. lasalocid monensin, narasin, salinomycin and semduramicin) as adverse

Denagard LC

Indications

For treatment of swine dysentery associated with *Brachyspira hyodysenteriae* susceptible to tiamulin:

 Utilize Denagard LC in drinking water at 3.5 mg/lb (60 ppm) for five days

For treatment of swine pneumonia associated with *Actinobaciliu*: *pleuropneumoniae* susceptible to tiamulin:

 Utilize Denagard LC in drinking water at 10.5 mg/lb (180 ppm) for five consecutive days

Elanco Animal Health. Data on file.

Denagard, Elanco and the diagonal bar logo are trademarks of Elanco or its affiliates.

© 2018 Elanco or its amiliate

Elanco supports the use of shared class antibiotics for therapeutic uses while under the oversight of a veterinarian. More details on Elanco's Antibiotic, Welfare and Sustainability Policies can be found on www.elanco.com/antimicrobialpolicy.

Keep out of reach of children. Avoid contact with skin.

- For use in drinking water of swine only. Prepare fresh medicated water daily. The effects of tiamulin on swine reproductive performance, pregnancy and lactation have not been determined
- If no response to treatment is obtained within 5 days re-establish the diagnosis.

If signs of toxicity occur, discontinue use of medicated water and replace with clean, fresh water.

Withdraw medicated water 3 days before slaughter after treatment at 3.5 mg/lb and 7 days before slaughter following treatment at

