

Valleyfield Ash Lagoons

Annual Environmental Monitoring Review 2016

SLR Ref: 405.00481.00033.001 Version No:1 March 2017

CONTENTS

i

1.0	INTRODUCTION	1
	1.1 Scope of Works	1
	1.2 Report Structure	2
2.0	LEACHATE QUALITY AND LEVELS	3
	2.1 'Leachate' Quality	3
	2.2 'Leachate' Levels	4
3.0	SUPERNATANT WATER QUALITY	6
4.0	SURFACE WATER QUALITY	7
	4.1 Toe Drain Water Quality	7
	4.2 Estuarine Water Quality	8
5.0	GROUNDWATER QUALITY AND ELEVATION	.11
	5.1 Groundwater Quality	. 11
	5.2 Groundwater Trigger Events	. 11
	5.3 Groundwater Elevations	. 12
6.0	GAS MONITORING DATA	. 15
7.0	WASTE CHARACTERISATION	. 18
	7.1 Topography of Site and Waste Inputs	. 18
	7.2 Waste Characterisation	. 18
8.0	ACTIONS AND RECOMMENDATIONS	. 19
9.0	CLOSURE	. 20

TABLES

Table 1-1 Summary Monitoring Requirements at Valleyfield Ash Lagoons	1
Table 2-1 Summary of 'Leachate' Quality 2016	3
Table 3-1 Summary of Supernatant Water Quality 2016	6
Table 4-1 Summary of Toe Drain Water Quality 2016	7
Table 4-2 Summary of Estuarine Water Quality 2016	9
Table 5-1 Summary of Groundwater Trigger Events Exceedences in 2016	12
Table 5-2 Summary of Groundwater Elevations (2016)	13
Table 6-1 Summary of Oxygen, Atmospheric Pressure and Differential	Pressure in
Groundwater Monitoring Boreholes - 2016	
Table 6-2 Summary of Methane and Carbon Dioxide Concentrations a	and Trigger
Events in Gas Monitoring Boreholes - 2016	17

FIGURES

Figure 2-1 Summary of 'Leachate' Elevations in PFA boreholes 2016	5
Figure 5-1 Summary of Groundwater Elevations (m AOD) at Valleyfield Ash Lago	ons
2016	. 13

APPENDICES

Appendix A	Electronic Copy of Alcontrol Chemical Analysis Data and Test Certificates
Appendix B	Selected Leachate Quality Chemographs
Appendix C	Leachate Hydrographs
Appendix D	Selected Supernatant Water Quality Chemographs
Appendix E	Selected Toe Drain Water Quality Chemographs
Appendix F	Selected Estuarine Water Quality Chemographs
Appendix G	Selected Groundwater Quality Chemographs
Appendix H	Groundwater Control Charts
Appendix I	Groundwater Hydrographs
Appendix J	Methane, Carbon Dioxide and Oxygen Concentration Plots and Control Charts

DRAWINGS

Drawing No.1 Borehole Monitoring Locations

1.0 INTRODUCTION

1.1 Scope of Works

SLR Consulting Limited (SLR) has been retained by Scottish Power Generation Ltd (SPGL) to prepare the annual monitoring report for their ash lagoons at Valleyfield, High Valleyfield, Fife.

The site is operated and managed in accordance with PPC Permit No. PPC/A/1004266. Condition 10.4.1 of the Permit states:

'The Operator shall report to SEPA on the basis of aggregated data once a year the results of monitoring carried out in compliance with Conditions 8.2.3, 10.1.12, and 11.7.1. This report shall give an explanation and interpretation of any trends or exceedences of Trigger levels in the monitoring data submitted. This report shall be submitted to SEPA, in writing, by 31st March each year.'

This report presents and reviews the monitoring data for the period 1st January 2016 to 31st December 2016.

All laboratory certificates detailing the chemical analysis data for the period are presented in Appendix A and supporting time series plots and reports are presented in Appendices B - J. A site monitoring plan is also presented as Drawing No.1. The environmental monitoring requirements at Valleyfield are based on those outlined in the PPC Permit unless these have been amended by the Valleyfield Ash Lagoons Management Plans (LON ENV PPC 7725, 2009) and are detailed in Table 1-1.

Type of Sample	Location	Suite
Groundwater	VF1, VF3D, VF5, VF7, VF8, VF9, VF10, VF11 and VF12	Quarterly Water level, Electrical Conductivity, pH, Antimony, Arsenic, Boron, Cadmium, Chromium, Chloride, Magnesium, Manganese, Naphthalene Molybdenum, Selenium, Sodium, Sulphate and Vanadium
Leachate	VF4 and VF6	Quarterly Electrical Conductivity, pH, Antimony, Arsenic, Boron, Cadmium, Chromium, Chloride, Magnesium, Manganese, Naphthalene Molybdenum, Selenium, Sodium, Sulphate and Vanadium
Surface Water	River Forth upstream and downstream of site Toe Drain Discharge Water Supernatant Lagoon Water	Quarterly Electrical Conductivity, pH, Antimony, Arsenic, Boron, Cadmium, Chromium, Chloride, Magnesium, Manganese, Naphthalene Molybdenum, Selenium, Sodium, Sulphate and Vanadium
Gas	All Perimeter Boreholes	Q <i>uarterly</i> Methane, Carbon Dioxide, Oxygen, Atmospheric Pressure, Differential Pressure.
Ash Characterisation	PFA samples	Quarterly

Table 1-1Summary Monitoring Requirements at Valleyfield Ash Lagoons

Type of Sample	Location	Suite
WAC Test		Waste Acceptance Criteria (WAC) testing (2 Batch test) and leachability testing for pH, Antimony, Arsenic, Boron, Cadmium, Chromium, Chloride, Magnesium, Manganese, Naphthalene ,Molybdenum, Selenium, Sodium, Sulphate and Vanadium

It is noted that at the request of ScottishPower the full monitoring suite detailed in Table 10.1.12 of the PPC Permit has been analysed in third and fourth quarter of this monitoring period for groundwater, leachate, toe drain and estuarine (surface water) samples. This report has been prepared in accordance with the 2009 Valleyfield Ash Lagoons Management Plans.

Details of remedial actions or additional monitoring completed by SPGL, over and above that specified in the PPC Permit, are presented in the appropriate sections of this report.

1.2 Report Structure

This report is structured as follows:

- Section 2.0 Presents the results of leachate quality and level from 'in-waste' boreholes;
- Section 3.0 Presents a summary of the supernatant water quality collected;
- Section 4.0 Presents the results of surface water quality monitoring;
- Section 5.0 Assesses groundwater quality and the results of routine groundwater level monitoring;
- Section 6.0 Presents perimeter landfill gas monitoring data;
- Section 7.0 Provides information on the topography of the ash lagoons, waste type and quantity; and
- Section 8.0 Presents actions and recommendations.

2.0 LEACHATE QUALITY AND LEVELS

2.1 'Leachate' Quality

Condition 10.1.2. of the PPC Permit requires that 'leachate' monitoring is conducted in boreholes VF4 and VF6; the 'PFA boreholes'. In accordance with the Permit requirements and the revised monitoring protocol as detailed in the Valleyfield Management Plans (2009), monitoring has been undertaken for the PFA boreholes VF4 and VF6 on a quarterly basis during this monitoring period and the following determinands reported herein:

- electrical conductivity
 - ty o pH
- o antimony

0

o cadmium

magnesium

- o arsenico chloride
- manganese
 - naphthalene
- molybdenumselenium

In the instance where concentrations of determinands are reported below the limit of detection (LoD), these data points are presented on the charts as the reported LoD (i.e. <0.05 mg/l shall be plotted as 0.05 mg/l).

A summary of the 'leachate' quality recorded in the 'PFA' boreholes during the monitoring period is summarised below in Table 2-1 with time-series plots of selected determinands presented in Appendix B. Leachate analysis data are presented electronically in Appendix A.

		•	VF4					
Determinand	Unit	Count	Min	Mean	Max	Min	Mean	Max
Chloride	mg/l	4	8,860	10,515	11,500	3,000	5,973	7,540
Conductivity	mS/cm	4	22.3	24.9	27.4	8.44	14.0	18.7
pН	pH Units	4	7.63	7.77	7.90	7.89	7.99	8.15
Sulphate	mg/l	4	1,350	1,523	1,650	470	695	816
Antimony	mg/l	4	0.000160	0.000185	0.000236	0.000213	0.000699	0.001250
Arsenic	mg/l	4	0.00127	0.00535	0.01700	0.02460	0.03238	0.04280
Boron	mg/l	4	3.77	6.66	9.74	5.07	7.55	10.00
Cadmium	mg/l	4	0.000080	0.000573	0.001440	0.000083	0.000970	0.003020
Chromium	mg/l	4	0.00120	0.00208	0.00352	0.00110	0.00129	0.00164
Magnesium	mg/l	4	410.0	518.5	580.0	29.6	47.4	64.2
Manganese	mg/l	4	0.0370	0.0689	0.1070	0.0116	0.0413	0.0597
Molybdenum	mg/l	4	0.218	0.265	0.387	0.302	0.422	0.466
Selenium	mg/l	4	0.00139	0.01646	0.05670	0.00081	0.02100	0.06770
Sodium	mg/l	4	3,900	5,308	5,990	1,680	2,653	3,500
Vanadium	mg/l	4	0.00024	0.00077	0.00130	0.00996	0.02494	0.04030
Naphthalene	mg/l	4	<0.0001	-	<0.0001	<0.0001	-	<0.0001

Table 2-1Summary of 'Leachate' Quality 2016

Review of the data collected indicates that:

• Chloride, sulphate, chromium, magnesium, manganese, and sodium have all recorded higher maximum concentrations in VF4 than in VF6 during 2016, as was the case in 2015 and reflects VF4 in closer to the Forth in comparison to VF6;

o boron

0

0

0

chromium

sulphate

sodium

o vanadium

• Antimony generally presents higher concentrations in VF6 than those recorded at VF4 with VF4 presenting very stable concentrations in a narrow range;

4

- Magnesium and manganese concentrations are, in general, significantly higher in VF4 than recorded in VF6, which continues the trend observed in 2011, 2012, 2013, 2014 and 2015;
- Naphthalene was not detected above the laboratory limit of detection (<0.0001mg/l) during 2016 in either borehole;
- Boron concentrations are generally higher in VF6 than those in VF4 and within historic ranges. Samples collected from VF4 on 07/03/2016 recorded the highest concentration (9.74 mg/l) of boron in this borehole since monitoring commenced, with concentrations falling significantly to 3.77 mg/l for samples collected on 06/06/2016;
- Cadmium concentrations have remained within historical ranges at both monitoring locations, samples collected on 06/06/2016 from both VF4 and VF6 showed higher concentrations of 0.00144 and 0.00302 mg/l respectively however no discernible trends are observed when concentrations fell significantly in the third quarter of 2016;
- Vanadium recorded in VF6 is higher than that recorded in VF4 during this monitoring period. Concentrations of vanadium in VF4 are very stable and low, existing in a narrow range, whilst VF6 shows more variability; and
- All concentrations are largely comparable to those recorded during previous monitoring events at site.

No leachate composition control and trigger levels are specified in the PPC Permit or in the Leachate Management Plan¹ submitted to SEPA in November 2009.

2.2 'Leachate' Levels

A summary of 'leachate' elevations collected on a quarterly basis during the review period are presented as a time-series plot below in Figure 2-1. A summary of all 'leachate' elevation data, showing long term trends is presented in Appendix C.

¹ SLR Consulting Limited, November 2009, *Valleyfield Ash Lagoons Leachate Management Plan*, Condition 6.4.1, SLR Ref 405-0481-00020-001.

Review of Figure 2-1 indicates that VF4 records higher elevations (between 1.43 to 1.98 m above ordnance datum (AOD)) than PFA borehole VF6 (between 1.10 and 1.56 m AOD) over all four monitoring rounds.

Review of Appendix C indicates that the 'leachate' elevations recorded during 2016 are largely representative of elevations recorded since monitoring commenced in accordance with the PPC Permit.

Figure 2-1 Summary of 'Leachate' Elevations in PFA boreholes 2016

3.0 SUPERNATANT WATER QUALITY

Prior to closure of Longannet Power Station and cessation of ash deposition supernatant water samples were obtained from the active PFA lagoon on a quarterly basis during the monitoring periods, and analysed in accordance with that detailed in the Valleyfield Groundwater Management Plan² submitted to SEPA in November 2009. However, following site closure, on 31/03/2016, supernatant water was no longer generated and sample collection was no longer possible. As such, the lagoons were only active during QM1, after which no samples were taken.

A summary of the supernatant water quality data collected for 2016 is presented below in Table 3-1.

Cummary of Supernatant Water wuality 2010							
Determinand	Unit	Concentration (07/03/2016)					
Antimony	mg/l	0.0337					
Arsenic	mg/l	0.132					
Boron	mg/l	7.38					
Cadmium	mg/l	<0.001					
Chromium	mg/l	0.0913					
Magnesium	mg/l	965					
Manganese	mg/l	0.00471					
Molybdenum	mg/l	0.41					
Selenium	mg/l	0.444					
Sodium	mg/l	8190					
Vanadium	mg/l	0.467					
Chloride	mg/l	17500					
Conductivity	mS/cm	36.8					
pH	pH Units	9.28					
Sulphate	mg/l	2500					
Naphthalene (ag)	mg/l	<0.0001					

 Table 3-1

 Summary of Supernatant Water Quality 2016

Time series plots of supernatant water quality are presented in Appendix D and confirm together with review of Table 3-1 that during the monitoring period:

- Concentrations of antimony, arsenic, boron, cadmium, molybdenum and vanadium are within historical ranges;
- Selenium recorded for supernatant samples collected on 07/03/206 were the highest since monitoring commenced at 0.444 mg/l, and
- naphthalene was not detected above the laboratory LoD (<0.0001mg/l) during the review period.

² SLR Consulting Limited, November 2009, *Valleyfield Ash Lagoons Groundwater Management Plan and HRA Review*, Condition 10.4.1, SLR Ref 405-0481-00020-003.

4.0 SURFACE WATER QUALITY

4.1 Toe Drain Water Quality

In accordance with Table 10.1.12 of the Permit, and the monitoring protocol proposed in the Groundwater Management Plan², discharge water quality monitoring data was collected on a quarterly basis from the Toe Drain. The location of the sampling point is shown on the monitoring plan presented as Drawing No.1.

Time series plots of the toe drain water quality are presented in Appendix E with a summary of quality data presented below in Table 4-1.

Determinand	Unit	No of readings	Minimum	Average	Maximum
Antimony	mg/l	4	0.000966	0.001429	0.00192
Arsenic	mg/l	4	0.00607	0.0097325	0.0184
Boron	mg/l	4	4.42	8.0325	11.4
Cadmium	mg/l	4	0.000171	0.00096	0.00255
Chromium	mg/l	4	< 0.0012	0.00127	0.00136
Magnesium	mg/l	4	219	235.25	265
Manganese	mg/l	4	0.11	0.1165	0.12
Molybdenum	mg/l	4	0.582	0.6405	0.667
Selenium	mg/l	4	0.00144	0.067	0.0503
Vanadium	mg/l	4	0.0403	0.064	0.0598
Conductivity	mg/l	4	22	26.131	26
Sulphate	mg/l	4	1430	1547.5	1630
Chloride	mS/cm	4	9230	10507.5	11000
рН	pH Units	4	8.08	8.2325	8.41
Sodium	mg/l	4	4530	5590	6740
Naphthalene (aq)	mg/l	4	<0.0001	-	<0.0001

Table 4-1Summary of Toe Drain Water Quality 2016

Review of the time-series plots and Table 4-1 confirms the following:

- Concentrations for many of determinands show a general decreasing trend in concentrations for the 2016 monitoring period (antimony, arsenic, cadmium, selenium and vanadium);
- Boron concentrations for samples collected on 07/03/2016 were the highest at 11.4 mg/l since monitoring commenced. It is noted that samples collected on 06/06/2016 showed a significant fall in boron to 4.42 mg/l, returning to concentrations that have been very stable and recorded between 2011-2015 at 7.52 and 8.74 mg/l during the third and fourth monitoring rounds in 2016.
- Calcium concentrations have generally decreased however samples collected on 06/06/2016 presented the highest concentrations (0.00255 mg/l) since the first quarter of 2014. It is noted that concentrations fell significantly during Q3 and Q4 2016 to the lowest concentrations (0.000171 mg/l) on 29/11/2016 since monitoring commenced;
- Molybdenum concentrations have remained very stable since 2011;
- Vanadium concentrations decreased steadily during 2016 and for samples collected on 29/11/2016 presented the lowest concentrations (0.0403 mg/l) since 2009; and

• Naphthalene has not been detected above the laboratory reporting limited (<0.0001mg/l) during the 2016 review period.

8

4.2 Estuarine Water Quality

In accordance with the PPC Permit, and the monitoring protocol proposed in the Groundwater Management Plan and Hydrogeological Risk Assessment (HRA) Review², surface water quality data is collected from the River Forth upstream and downstream of the site on a quarterly basis. Time-series plots of selected determinands are presented in Appendix F with summary statistics presented in Table 4-2.

		Upstream Water (ES2)					Downstream Water (ES1)			
Determinand	Unit	Count	Min	Mean	Max	Count	Min	Mean	Max	
Chloride	mg/l	4	16,200	16,750	17,600	4	16,200	17,075	17,900	
Conductivity	mS/cm	4	30.8	34.5	36.6	4	33.4	36.7	38.4	
pН	Units	4	7.82	7.86	7.89	4	7.8	8.0	8.5	
Sulphate	mg/l	4	2,190	2,245	2,320	4	2,320	2,365	2,400	
Antimony	mg/l	4	<0.00016	0.00176	0.00574	4	0.000471	0.002620	0.006650	
Arsenic	mg/l	4	0.00185	0.01897	0.05550	4	0.00229	0.02616	0.05820	
Boron	mg/l	4	2.42	3.23	3.79	4	3.02	3.43	4.31	
Cadmium	mg/l	4	<0.0008	0.00254	0.00951	4	<0.00008	0.00319	0.01080	
Chromium	mg/l	4	<0.0012	0.0050	0.0072	4	<0.0012	0.0105	0.0210	
Magnesium	mg/l	4	905	1,004	1,070	4	965	1,071	1,110	
Manganese	mg/l	4	0.00736	0.02289	0.0507	4	0.00155	0.01261	0.027	
Molybdenum	mg/l	4	0.00501	0.03593	0.05650	4	<0.0024	0.0612	0.165	
Selenium	mg/l	4	<0.00081	0.0639925	0.178	4	<0.00081	0.08118	0.19100	
Sodium	mg/l	4	7,390	8182.5	8,790	4	7,930	8,798	9,700	
Vanadium	mS/cm	4	0.00149	0.00374	0.00780	4	<0.0024	0.0276	0.0873	
Napthalene	Units	4	< 0.00001	-	<0.00001	4	< 0.00001	-	<0.00001	

Table 4-2				
Summary of Estuarine Water Quality 2016				

9

Review of the time-series plots and Table 4-2 indicates that:

- concentrations of the majority of determinands remained within historic ranges with samples collected on 06/06/2016 presenting slightly elevated concentrations (lower concentrations were then recorded in September and November 2016);
- arsenic concentrations for samples collected on 06/06/2016, 0.0582 and 0.0555 mg/l for ES1 and ES2 respectively, were the highest since 2011. It is noted that concentrations for samples collected on 06/09/2016 were significantly lower at 0.00229 and 0.00461 mg/l for ES1 and ES2 respectively, remaining low during the fourth 2016 quarterly sampling round;
- cadmium concentrations were generally low and very stable throughout 2016, however it is noted that samples collected on 06/06/2016 presented higher concentrations at 0.0108 and 0.00951 mg/l for ES1 and ES1 respectively with ES1 presenting its highest concentration since monitoring began. Concentrations for cadmium in samples collected on 06/09/2016 fell significantly to 0.00008 and 0.00048 mg/l for ES1 and ES2 respectively, remaining low during the fourth 2016 quarterly sampling round;
- molybdenum concentrations for samples collected at ES1 on 07/03/2016 were the highest since 2012 at 0.165 mg/l with samples collected at ES2 on 07/03/2016 were significantly lower at 0.0548 mg/l. Concentrations of molybdenum in samples collected on 06/06/2016 were very low at 0.0024 and 0.00501 mg/l for ES1 and ES2 respectively;
- selenium concentrations for samples collected on 06/06/2016 were the highest since 2010 at 0.191 and 1.178 mg/l for ES1 and ES2 respectively. Concentrations for selenium in samples collected 06/09/2016 fell significantly to 0.00081 and 0.00486 mg/l for ES1 and ES2 respectively;
- vanadium concentrations were generally very stable and low however samples collected for ES1 on 07/03/2016 were the highest since 2012 at 0.0873 mg/l. Samples collected from ES1 on 06/06/2016 presented vanadium concentration significantly lower at 0.0024 mg/l;
- in general there is little difference between upstream and downstream estuarine water during 2015; and
- samples collected during the third and fourth 2016 quarterly rounds presented very stable and low concentrations for each determinand and no specific trends are noted in the monitoring record.

5.0 GROUNDWATER QUALITY AND ELEVATION

Groundwater elevation and quality sampling was undertaken from boreholes specified in Table 10.1.12 of the PPC Permit on a quarterly basis. It should be noted that the monitoring suite analysed is that stated in Table 13 of the Groundwater Management Plan and HRA Review², which is a revision to that stated in the original PPC Permit.

5.1 Groundwater Quality

Time-series plots of selected determinands for the review period are presented in Appendix G with raw data presented in Appendix A.

Review of the monitoring data indicates the following:

- Antimony concentrations are generally very low remaining significantly below both control and trigger levels in all boreholes for 2016 with the exception of samples collected from VF1 during the first quarterly monitoring event of 2016 where the trigger level (0.00625 mg/l) was exceeded with a concentration of 0.00782 mg/l. It is noted that concentrations for samples collected at VF1 fell below the LoD (<0.0016 mg/l) in the second and third monitoring events of 2016;
- Boron and molybdenum concentrations are generally very stable, existing in a narrow range (excluding VF8 and VF10) and within the historic ranges at all monitoring locations. VF8 and VF10 continue to present the highest concentrations of boron in monitored boreholes;
- Cadmium concentrations are within historic ranges at all monitoring locations during 2016 however several recorded elevated concentrations during the second quarterly monitoring round (only): VF3D, VF5, VF7, VF8, VF9 and VF10. Concentrations for all monitoring locations for the third and fourth 2016 quarterly monitoring events show a significant decrease and return the values typical of the long term monitoring record;
- Selenium concentrations presented within historic ranges for all monitoring locations. It
 is noted that the first and second quarterly monitoring events recorded concentrations
 within the typical ranges historically recorded by each monitoring well however in the
 third and fourth 2016 quarterly monitoring events concentrations fell significantly for all
 monitoring wells to below 0.00462 mg/l;
- Vanadium concentrations are very low and stable, existing within historic monitoring data ranges;
- Concentrations recorded in all groundwater monitoring boreholes have generally not shown any significant rising trends; and
- naphthalene has not been recorded above the LoD (<0.0001mg/l) throughout the review period.

Further review of the priority determinands is presented in Appendix H and Section 5.2 of this report.

5.2 Groundwater Trigger Events

For the purposes of this report groundwater quality data has been assessed against the control and trigger levels specified in Table 14 of the Groundwater Management Plan and HRA Review², submitted to SEPA in November 2009 which have been determined in accordance with Permit Condition 10.3.2 and are considered more appropriate for assessing groundwater quality at site than those originally stated in the PPC Permit.

Control charts showing concentrations recorded in each borehole and borehole specific control and trigger levels are presented in Appendix H.

Table 5-1 below summarises trigger events that have occurred during the review period and the results of repeat sampling (*see italics*). It should be noted that a trigger event occurs only when both the control level and the trigger level have been exceeded.

Determinand	Borehole	Control and Trigger Level	Concentration (sample date)
		Control Level : 0.00032 mg/l	0.000561 mg/l (07/06/2016)
	VFSD	Trigger Level : 0.00036 mg/l	0.000409 mg/l (29/06/2016)
Cadmium	VF9	Control Level : 0.00171 mg/l Trigger Level : 0.00036 mg/l	0.00493 mg/l (06/06/2016)(due to sampling error no repeat sample obtained)
	VF10	Control Level : 0.00157 mg/l	0.0017 mg/l (07/06/2016)
		Trigger Level : 0.00036 mg/l	0.00217 mg/l (29/06/2016)
Boron	VF8	Control Level : 6.12 mg/l	6.38 mg/l (07/09/216)
	10	Trigger Level : 4.924 mg/l	0.0179 mg/l (21/09/2016)

Table 5-1
Summary of Groundwater Trigger Events Exceedences in 2016

Review of Table 5-1 indicates that during the review period, trigger events (as stated in the Groundwater Management Plan and HRA Review) for boron occurred at borehole VF8 in the third quarter of 2016 and for cadmium at boreholes VF3D, VF9 and VF10 in the second quarter of 2016. No trigger events were recorded for antimony or vanadium throughout the review period.

Following review of the control charts the following observations are made:

- Boron concentrations at monitoring location VF8 exceeded control levels during September 2016, however repeat sampling presented significantly lower concentrations below both control and trigger levels. Concentrations remained below both control and trigger levels for samples collected in the fourth 2016 quarterly monitoring event; and
- Cadmium concentrations for monitoring locations VF3D (0.000561 mg/l), VF9 (0.00493 mg/l) and VF10 (0.0017 mg/l) all presented an exceedance both control and trigger levels in June 2016 however subsequent sampling in 2016 in September and November at all locations showed a significant fall in concentrations, and below the borehole specific trigger levels.

5.3 Groundwater Elevations

Groundwater elevations were obtained from the groundwater monitoring boreholes on a quarterly basis in accordance with the PPC Permit.

All groundwater elevations are compared to tide prediction levels for Kincardine obtained from the Admiralty easytide website (<u>http://easytide.ukho.gov.uk</u>) to determine whether measurements have been collected at high or low tide or during flood or ebb. A time-series plot of groundwater elevations for the review period is presented below, with summary statistics presented in Table 5-2. A groundwater hydrograph of the entire monitoring record is presented in Appendix I.

Figure 5-1 Summary of Groundwater Elevations (m AOD) at Valleyfield Ash Lagoons 2016

	Table 5-2	2	
Summary of	Groundwater	Elevations	(2016)

Danahala		Groundwater Elevations in mAOD												
Borenole	No of readings	Minimum	Mean	Maximum	Range (m)									
VF1	4	0.010	1.500	2.680	2.670									
VF3D	5	5.020	5.335	5.900	0.880									
VF5	6	2.530	2.818	2.920	0.390									
VF7	6	0.555	1.133	1.530	0.975									
VF8	5	1.560	1.678	1.870	0.310									
VF9	4	4.539	5.369	5.880	1.341									
VF10	5	0.590	0.984	1.508	0.918									
VF11	4	4.440	6.033	6.590	2.150									
VF12	6	3.106	3.330	3.760	0.654									

Review of Figure 5-1 and Table 5-2 suggests that the range in groundwater elevations over the monitoring period within each monitoring location is generally less than 1.0 m. VF1 has the greatest range suggesting that groundwater here is strongly influenced by the tide. The eastern boreholes VF5 and VF8 record the lowest ranges on site of less than 0.5 m. Groundwater elevations are greatest in boreholes VF3D, VF9, VF11 and VF12, located within the centre and north of the site, with the lowest elevations recorded in boreholes VF1, VF7, VF8 and VF10, which are located along the perimeter. This confirms that the groundwater flow direction is from the lagoons in a radial direction towards the east, south and west (i.e. towards the estuary), as stated in Section 3.2 of the Groundwater Management Plan and HRA Review report.

Borehole VF11 continues to record groundwater elevations above ground level confirming that this borehole monitors an artesian aquifer.

14

Review of the long term groundwater elevations, presented in Appendix I, indicates that the range of groundwater elevations in most of the boreholes is generally less than two metres. VF1 recorded its highest groundwater elevation during monitoring on 06/06/2016 at 2.68 m AOD since monitoring commenced. In summary, with the exception of VF1 on 06/06/2016, groundwater elevations recorded in 2016 have remained within elevations recorded in the baseline and long term monitoring record.

6.0 GAS MONITORING DATA

Perimeter landfill gas concentrations were monitored in all perimeter groundwater monitoring boreholes and the two PFA boreholes on a quarterly basis. Readings of methane, carbon dioxide, oxygen, atmospheric pressure and differential pressure were taken during each monitoring event.

Time-series plots of methane and carbon dioxide concentrations recorded during the review period are presented in Appendix J, together with long term monitoring data. Summary statistics for oxygen, atmospheric pressure and differential pressure are presented in Table 6-1 with exceedences of trigger levels for methane and carbon dioxide presented in Table 6-2. It should be noted that the trigger levels which the results are compared with in Table 6-2 are the site specific trigger levels proposed in the Gas Management Plan³ rather than those stated in the PPC Permit, which are the default trigger levels for non-hazardous waste landfill sites. Control charts are also presented within Appendix J.

Review of Table 6-2 highlights the following:

- Methane:
 - VF12 presented three exceedances of its methane trigger level (7.9 % vol.) on 07/062016 (18.6 % vol.), 07/09/2016 (15.3 % vol.) and 30/11/2016 (12.1 % vol.). Repeat testing conducted recorded methane concentrations below the trigger lev with 3.6, 7.4 and 1.4 % vol respectively; and
 - Monitoring locations VF1, VF4, VF6, VF7, VF8, VF9, VF10 and VF11 recorded their highest concentrations of methane during this monitoring period, however concentrations remained significantly below trigger levels.
- Carbon dioxide:
 - VF5 recorded two incidents of carbon dioxide trigger level (1.5 % vol.) exceedance on 07/09/2016 and 30/11/2016 with concentrations of 2.5 and 2.3 % vol respectively. Repeat sampling conduced recorded carbon dioxide concentrations below the trigger level with concentrations of 1.2 % vol on both exceedance incidents;
 - VF7 recorded two incidents of carbon dioxide trigger level (1.5 % vol.) exceedance on 07/09/2016 and 30/11/2016 with concentrations of 2.4 and 2.2 % vol respectively. Repeat sampling conduced recorded carbon dioxide concentrations below the trigger level with concentrations of 1.4 and 0.9 % vol on 07/09/2016 and 30/11/2016 respectively;
 - VF12 recorded an exceedance of its carbon dioxide trigger level (2.1 % vol.) on 07/09/2016 with a concentration of 2.4 % vol. It is noted that repeat sampling conducted recorded a concentration of 1.3 % vol.; and
 - VF10 continues to record the highest concentrations of carbon dioxide in monitored boreholes however concentrations remain below its trigger level (7.4 % vol.).
- Due to heavy rain, standpipes of monitoring wells VF3D and VF11 on 08/03/2016 were both flooded and gas analysis was not possible.

15

³ SLR Consulting Limited, September 2009, Valleyfield Ash Lagoons - Gas Management Plan, Condition 8.1.1.

Danahala	No of		Oxygen (%)		Atmosp	heric Pressu	ure (mb)	Differer	ntial Pressu	re (mb)
Borenole	readings	min	mean	max	min	mean	max	min	mean	max
VF1	4	16.4	18.0	18.9	1004	1017	1028	-2.16	-0.33	0.43
VF3D	3	19.5	20.2	21.2	1017	1022	1027	-0.19	0.48	1.07
VF4	4	19.5	20.3	21.6	1011	1019	1028	0.00	0.07	0.24
VF5	6	13.5	15.7	18	1005	1018	1027	-0.10	0.51	2.12
VF6	4	20.0	20.3	20.8	1004	1017	1026	-0.12	-0.01	0.17
VF7	6	17.1	17.5	17.8	1004	1019	1029	0.12	1.66	3.21
VF8	4	19.3	20.0	20.6	1003	1017	1028	-13.67	-3.40	0.05
VF9	4	0	3.3	6.3	1011	1019	1027	-0.07	0.19	0.65
VF10	4	7.9	11.0	16.9	1005	1018	1028	0.03	0.11	0.17
VF11	3	19.4	20.3	21	1017	1022	1027	-0.02	0.00	0.02
VF12	7	0.2	11.3	21.3	1003	1019	1029	-27.69	2.00	21.87

 Table 6-1

 Summary of Oxygen, Atmospheric Pressure and Differential Pressure in Groundwater Monitoring Boreholes - 2016

16

Table 6-2

Summary of Methane and Carbon Dioxide Concentrations and Trigger Events in Gas Monitoring Boreholes - 2016

				Methane (%)	//v)			Carbon Dioxide (%v/v)							
Boreholes	No of Readings	Minimum	Average	Maximum	Trigger Level	Trigger Events – Monitoring round: initial conc. (repeat conc.)	Minimum	Average	Maximum	Trigger Level	Trigger Events – Monitoring round: initial conc. (repeat conc.)				
VF1	4	0.0	0.1	0.4	1.0	-	0.3	0.5	0.7	1.5	-				
VF3D	3	0.2	0.3	0.4	3.4	-	0.1	0.2	0.2	1.5	-				
VF4	4	0.0	0.1	0.4	1.0	-	0	0.2	0.7	1.5	-				
VF5	6	0.4	3.2	7.3	12.8	-	0.8	1.5	2.5	1.5	QM3: 2.5 (1.2) QM4: 2.3 (1.2)				
VF6	4	0.0	0.1	0.4	1.0	-	0.1	0.3	0.3	1.5	-				
VF7	6	0.0	0.2	0.4	1.0	-	0.9	1.5	2.4	1.5	QM3: 2.4 (1.4) QM4: 2.2 (0.9)				
VF8	4	0.0	0.1	0.4	1.0	-	0.1	0.5	1.4	1.5	-				
VF9	4	0.0	0.1	0.4	1.0	-	0.1	0.4	0.9	1.5	-				
VF10	4	0.0	0.1	0.4	1.0	-	2	4.9	6.4	7.4	-				
VF11	3	0.0	0.3	0.5	1.0	-	0.1	0.2	0.2	1.5	-				
VF12	7	1.4	8.6	18.6	7.9	QM2: 18.6 (3.6) QM3: 15.3 (7.4) QM4: 12.1 (1.4)	0.5	1.3	2.4	2.1	QM2: 2.4 (1.3)				

Note: Trigger levels are those stated in the Gas Management Plan, September 2009.

7.0 WASTE CHARACTERISATION

7.1 Topography of Site and Waste Inputs

Details of the site topography, waste inputs, the volume of cenospheres removed from site and the remaining lagoon capacities are reported separately to SEPA under separate conditions of the site PPC Permit.

No significant engineering works have been undertaken at the site during the reporting period and ash deposition occurred only during the first quarter of 2016.

7.2 Waste Characterisation

In accordance with the PPC Permit, sampling of the waste has been undertaken for the period whilst the Valleyfield site continued to accept ash from Longannet Power Station and the monitoring quarter immediately after (March and June 2016).

A single sample of the PFA waste was obtained as part of the quarterly monitoring suite in first and second quarters of 2016, which has undergone a 2-batch leachability testing, together with analysis of the solid waste. Results are presented in Appendix A.

The results from 2016 suggest that the solid waste typically has an alkaline pH of between 9.16 and 9.77, while organic carbon content is recorded at 11.8 and 6.76 % (classed as hazardous wastel) for samples collected 07/03/2016 and 06/06/2016 respectively, which is largely comparable to previous results. It is noted that leached dissolved organic carbon was below the LoD for samples collected in 2016. The vast majority of parameters, and in particular substances such as PAHs and PCBs, fall below the laboratory method detection limit.

Concentrations recorded during 2016 are similar to those recorded as part of the PPC Application and the previous Annual Monitoring Reviews.

8.0 ACTIONS AND RECOMMENDATIONS

The condition of the boreholes remains satisfactory after the remediation works undertaken in November / December 2013. The gas and groundwater monitoring equipment also remains in satisfactory condition and conforms to the original monitoring borehole designs agreed during the PPC permitting works.

19

Longannet Power Station has ceased the deposition of ash to the Valleyfield Ash Lagoons, however it is proposed that quarterly monitoring in accordance with the details set out in the PPC Permit and supporting Management Plans continues during the post-closure phase until a timescale for monitoring reduction or cessation is agreed with SEPA.

9.0 CLOSURE

This report has been prepared by SLR Consulting Limited with all reasonable skill, care and diligence, and taking account of the manpower and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of Scottish Power Generation Ltd; no warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR.

SLR disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

	LEGEN	١D				
			INSTAL	LATION	BOUNDARY	
C.			ACCES	S ROAD		
^	Т	D	toe df Point	RAIN MO	NITORING	
Cave	S	Ν	SUPER MONITO	NATANT ORING F	WATER POINT	
MAINS	E	S	ESTUA POINT	RINE MC	DNITORING	
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	VF6		PFA MC	ONITORI	NG BOREHOLE	
	VF1	•	DEEP (MONIT(GROUND ORING B	WATER OREHOLE	
``````````````````````````````````````	<b>0</b> Revision	IG Bv	ZR Chk'd By	01/15 Date	Comments	
• • 'Muq						
00000		SC	OTT	ISH	POWER	
Sand &		Ene	ergy W	holes	ale	
Mud	S	LF	R		4 THE F RODDINGLAW B PARK EDINBURGH. E T: 0131 F: 0131 www.sirconsu	COUNDAL USINESS GOGAR EH12 9DB 335 6830 335 6831 ulting.com
	Site VALLE	YFIELD	) ASH LA	GOON	3	
	Project ANNU/	AL MON	NITORIN	g revie	EW 2014	
	Drawing BOR LOC	Title EHOI ATIO	LE MO NS	NITO	RING	
	Scale 1:10.000	@ A3		Date .IAN	e JUARY 2015	
	Drawing N	Jumber				Revision
	J	ambor		4		<b>^</b>
				1		0



SLR Consulting Ltd Floor 2 4/5 Lochside View Edinburgh Park Edinburgh Lanarkshire EH12 9DH

Attention: Zak Ritchie

# **CERTIFICATE OF ANALYSIS**

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 17 March 2016 H_SLR_EDH 160309-113 405.00481.00033 Valleyfields 353745

We received 16 samples on Wednesday March 09, 2016 and 16 of these samples were scheduled for analysis which was completed on Thursday March 17, 2016. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan Operations Manager



Alcontrol Laboratories is a trading division of ALcontrol UK Limited Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. ALcontrol Laboratories

#### **CERTIFICATE OF ANALYSIS**

Validated

SDG:	160309-113	Location:	Valleyfields	Order Number:	405/8371
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	353745
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:	

# **Received Sample Overview**

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
13060782	ES1			07/03/2016
13060783	ES2			07/03/2016
13060787	PFA			07/03/2016
13060785	SN			07/03/2016
13060784	TD			07/03/2016
13060790	VF1			08/03/2016
13060788	VF4			07/03/2016
13060793	VF5			08/03/2016
13060794	VF6			08/03/2016
13060795	VF7			08/03/2016
13060796	VF8			08/03/2016
13060789	VF9			07/03/2016
13060797	VF10			08/03/2016
13060798	VF11			08/03/2016
13060799	VF12			08/03/2016
13060792	VF3D			08/03/2016

Only received samples which have had analysis scheduled will be shown on the following pages.

ALcontrol L	aborator.	ies	С	ER	2TI	FI	CA	TE	= 0	)F	ΔΙ			YS	is	5														Ľ		Valida
SDG: Job: Client Reference:	160309-113 H_SLR_EE 405.00481	3 0H-58 00033	Location Custome Attentior	: er:	Va SL Za	alley R ( ak R	field Con: itch	ds sulti ie	ing	Ltd			_					C F S	Drde Rep Sup	er I ort ers	Nur Nu	nbe imt ed	er: ber Re	: poi	rt:		40 35	5/83 374	371 5	I		
Saline Water (Sal Results Legend X Test	<b>W</b> )	Lab Sam	ple No(s)		13060782		13060783		13060785		13060784			13060700		13060788		13060793		13060794		CEVNONEL	100000		13060796		13060789			13060797	13060700	
No Determination Possible		Customer Sample Reference			ES1		ES2		SN	2	TD		4	VE1		VF4		VF5		VF6		VF7	V/F-7		VF8		6HA		¢T ic	VE10	1/011	
		AGS Re	ference																													
		Dept	h (m)																													
	-	Cont	ainer	0.5l glass bottle (AL	500ml Plastic (ALE	0.5I glass bottle (AL	500ml Plastic (ALE	0.5I glass bottle (AL	500ml Plastic (ALE	0.5I glass bottle (AL	500ml Plastic (ALE	0.5I glass bottle (AL	500ml Plastic (ALE2	0.51 glass bottle (AL	500ml Plastic (ALE2	U.5I glass bottle (AL HNO3 Filtered (ALE	500ml Plastic (ALE2	HNO3 Filtered (ALE	500ml Plastic (ALE2	HNO3 Filtered (ALE	0.5I glass bottle (AL	500ml Plastic (ALE	0.51 glass bottle (AL	500ml Plastic (ALE2	HNO3 Filtered (ALE	0.51 glass bottle (AL	HNO3 Filtered (ALE	0.5I glass bottle (AL	500ml Plastic (ALE2	U.5I glass bottle (AL		
Anions by Kone (w)		All	NDPs: 0 Tests: 15		x		x		x		x		x		x		x		X			x		x		<b>&gt;</b>	×		x			
Conductivity (at 20 deg.C)		All	NDPs: 0 Tests: 15		x		x		x		x		x		x		x		x			x		x		, ,	×		x			
Dissolved Metals by ICP-N	ЛS	All	NDPs: 0 Tests: 15		×		x		x	( (	x		)	C 100 Control of the second		x		x		x		>	C		x		×		2	×		
Metals by iCap-OES Disso	blved (W)	All	NDPs: 0 Tests: 15		×	2	x		x	<u> </u>	x		)	Contraction 1 and 1 a		x		x		x		>	C		x		×	2	2	×		
PAH Spec MS - Aqueous (	(W)	All	NDPs: 0 Tests: 15	x		x		x		x		x		x		×		2	x		x		x			x	-	x		>	<mark>&lt;</mark>	
pH Value		All	NDPs: 0 Tests: 15		x		x		x		x		x		x		x		x			x		x		<b>)</b>	×		x			

ALcontrol La	boratorie	es	C	ER'	TIFIC	ATE	OF ANALYSIS	Validated
SDG: Job: Client Reference:	160309-113 H_SLR_EDF 405.00481.0	H-58 10033	Location: Custome Attention	r:	Valleyfi SLR Co Zak Rit	elds onsulting chie	Drder Number: 405/8371 Ltd Report Number: 353745 Superseded Report:	
Saline Water (Sal W Results Legend X Test	V)	Lab Sample N	√o(s)	13060798	13060799	13060792		
No Determinati Possible	on	Custome Sample Refer	r ence	VF11	VF12	VF3D		
		AGS Refere	nce					
		Depth (m	)					
		Containe	r	HNO3 Filtered (ALE 500ml Plastic (ALE2	HNO3 Filtered (ALE 500ml Plastic (ALE2 0.5l glass bottle (AL	HNO3 Filtered (ALE 500ml Plastic (ALE2 0.5l glass bottle (AL		
Anions by Kone (w)	A	JI	NDPs: 0 Tests: 15	x	x	x		
Conductivity (at 20 deg.C)	A	JI	NDPs: 0 Tests: 15	x	x	x		
Dissolved Metals by ICP-MS	3 A	JI	NDPs: 0 Tests: 15	x	x	x		
Metals by iCap-OES Dissolv	red (W) A	JI	NDPs: 0 Tests: 15	x	x	x		
PAH Spec MS - Aqueous (W	/) A	JI	NDPs: 0 Tests: 15		x	x		
pH Value	A	JI	NDPs: 0 Tests: 15	x	x	x		

ALcontrol	Laborator	ies	C	EPTI		'SIS		١	/a	/alio
SDG: Job: Client Reference:	160309-11 H_SLR_EI 405.00481	3 DH-58 .00033	Location: Customer Attention	Va r: SL : Za	Ileyfields R Consulting Ltd k Ritchie	Order Number: Report Number: Superseded Report:	405/8371 353745			
SOLID		-			1					
Results Legend		Lab San	nple No(s)	13060						
X Test				787						
No Determi	nation .				-					
Possible	lation	Cus	tomer							
		Sample	Reference	PFA						
		-								
		AGS R	eference							
					-					
		Dep	th (m)							
				400 250	-					
				g VO( Dg Tul )g Am						
		Con	tainer	) (ALE ) (ALE ber Ja						
				:215) :214) ir (AL						
ANC at pH4 and ANC at	pH 6	All	NDPs: 0 Tests: 1		]					
			10303. 1	x						
Anions by Kone (w)		All	NDPs: 0 Tests: 1							
				x						
CEN Readings		All	NDPs: 0 Tests: 1							
	140	A.II.		x	-					
Dissolved Metals by ICP	-1015	All	NDPs: 0 Tests: 1	<b>.</b>						
Dissolved Organic/Inorg	anic	All	NDPs' 0	^	-					
Carbon			Tests: 1	x						
Fluoride		All	NDPs: 0	<u>^</u>	-					
			Tests: 1	x						
GRO by GC-FID (S)		All	NDPs: 0		-					
			Tests: 1	X						
Loss on Ignition in soils		All	NDPs: 0							
			Tests: 1	x						
Mercury Dissolved		All	NDPs: 0		1					
			lests: 1	x						
Mineral Oil		All	NDPs: 0		1					
			10000. 1	x						
PAH Value of soil		All	NDPs: 0 Tests: 1							
				x						
PCBs by GCMS		All	NDPs: 0 Tests: 1							
				x						
рН		All	NDPs: 0 Tests: 1							
		A.II.		X						
Phenois by HPLC (W)		All	NDPs: 0 Tests: 1							
Operando el construcción de		A.II.		X	-					
Sample description		All	NDPs: 0 Tests: 1							
				X						

ALcontrol L	aboratorie	es						Validated
			CE	RTI	FICATE OF ANALYSIS			
SDG: Job: Client Reference:	160309-113 H_SLR_EDF 405.00481.0	H-58 10033	Location: Customer: Attention:	Val : SLI Zal	leyfields R Consulting Ltd k Ritchie	Order Number: Report Number: Superseded Report:	405/8371 353745	
SOLID Results Legend		Lab Sample N	o(s)	13060787				
No Determina Possible	ation	Customer Sample Refere	ence	PFA				
		AGS Referer	nce					
		Depth (m)						
		Container		60g VOC (ALE215) 400g Tub (ALE214) 250g Amber Jar (Al				
Total Dissolved Solids	A	NII	NDPs: 0 Tests: 1	x	Ţ			
Total Organic Carbon	A	NI	NDPs: 0 Tests: 1	x				

ALcontrol Laboratories						
		CEF	RTIFICATE OF ANALYSIS	5		
SDG:	160309-113	Location:	Valleyfields	Order Number:	405/8371	
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	353745	
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:		

# **Sample Descriptions**

Grain Sizes												
very fine	<0.0	063mm	fine	0.063mm - 0.1mm	medium	0.1mm	n - 2mm	coai	rse 2mm - 1	0mm	very coa	rse >10r
Lab Sample	No(s)	Custom	er Sample Re	f. Depth (m)	C	olour	Descript	ion	Grain size	Inclu	usions	Inclusions 2
1306078	37		PFA		(	Grey	Sandy Silt	Loam	0.063 - 2.00 mm	N	one	None

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

**ALcontrol Laboratories** 

(

## **CERTIFICATE OF ANALYSIS**

Validated

Results Legend		Customer Sample R	ES1	ES2	PFA	SN	TD	VF1
# ISO17025 accredited.			201	202		0.11	.5	
M mCERTS accredited.								
diss.filt Dissolved / filtered sample.		Depth (m)						
tot.unfilt Total / unfiltered sample.		Sample Type	Saline Water (Sal W)	Saline Water (Sal W)	Soil/Solid	Saline Water (Sal W)	Saline Water (Sal W)	Saline Water (Sal W)
* Subcontracted test. ** % recovery of the surrogate standa	rd to	Date Sampled Sample Time	07/03/2016	07/03/2016	07/03/2016	07/03/2016	07/03/2016	08/03/2016
check the efficiency of the method.	The	Date Received	09/03/2016	09/03/2016	09/03/2016	09/03/2016	09/03/2016	09/03/2016
results of individual compounds wi	thin	SDG Ref	160309-113	160309-113	160309-113	160309-113	160309-113	160309-113
(F) Trigger breach confirmed	,orony	Lab Sample No.(s)	13060782	13060783	13060787	13060785	13060784	13060790
1-5&+§@ Sample deviation (see appendix)		AGS Reference						
Component	LOD/Un	its Method	07.0	00.0			00.0	04.0
Conductivity @ 20 deg.C	<0.00	5 1M120	37.2	36.6		30.8	22.9	24.3
	mS/cr	n	#	#		#	#	#
Antimony (diss.filt)	<0.000	16 TM152	0.00665	<0.00016		0.0337	0.00192	0.00782
	mg/l							
Arsenic (diss.filt)	<0.000	12 TM152	0.0379	0.0139		0.132	0.00821	0.00903
	mg/l		#	#		#	#	#
Boron (diss.filt)	< 0.00	94 TM152	4.31	3.79		7.38	11.4	0.974
	ma/l		#	#		#	#	#
Cadmium (diss filt)	<0.00	1 TM152	<i></i> <0.001	0.000109		 <0.001	0.00083	<i></i> <0.001
Cadmian (diss.int)	~0.000 ma/l	1111132	~0.001	0.000103		×0.001 #	0.00003 #	<0.001 #
Observatives (diag filb)	-0.000		#	#		#	#	#
Chromium (diss.nit)	<0.000	22 11/152	0.021	0.00547		0.0913	0.00136	0.00397
	mg/i		#	#		#	#	#
Manganese (diss.filt)	<0.000	04 TM152	0.00909	0.0165		0.00471	0.119	0.179
	mg/l		#	#		#	#	#
Molybdenum (diss.filt)	<0.000	24 TM152	0.165	0.0548		0.41	0.582	0.0382
	mg/l		#	#		#	#	#
Selenium (diss.filt)	<0.000	39 TM152	0.124	0.0723		0.444	0.0202	0.0394
. ,	ma/l	-	#	#		#	#	#
Vanadium (diss filt)	<0 000	24 TM152	0.0873	0,00327		0 467	0 0598	<0 0024
	ma/l			5.00021 #		0. <del>-</del> 01 #		·0.0024 #
Sulphoto	<0 m	~/	π 	π		7500	π	π 000
Sulphate	<2 m	g/i 11/1184	2320	2320		2500	1430	923
			#	#		#	#	#
Chloride	<2 m	g/I TM184	16200	17600		17500	9230	11800
			#	#		#	#	#
Sodium (diss.filt)	<0.07	6 TM228	7990	7390		8190	4530	4410
	mg/l		#	#		#	#	#
Magnesium (diss.filt)	< 0.03	6 TM228	1110	970		965	219	558
<b>3</b> ( )	ma/l		#	#		#	#	#
nH	<1 nł	H TM256	8.5	7 85		9.28	8 4 1	74
P.1	Units	1 111200	0.0 #	#		0.20 #	±	#
Maiatura Contant Batia (%	0/	DM024	<i>#</i>	TT TT	40	π	T T	п
of as received sample)	70	FIVIU24			40			
	.0.7	0/ TM040			7.00			
Loss on ignition	<0.7	% IMU18			7.28			
					M			
Mineral oil >C10-C40	<1 mg	/kg TM061			3.73			
Mineral Oil Surrogate %	%	TM061			92			
recovery**								
Organic Carbon, Total	<0.2	% TM132			11.8			
-					М			
н	1 n⊢	TM133			9 77			
<b>F</b>	Units				М			
PCB congener 28	<0.00	3 TM168			<0.003			
	-0.00 ma/ka				-0.000 M			
PCB congener 52	-0.00	2 TM460						
r ob congener 52	<0.00 ma//	0 INTOX			~0.003			
	mg/K				M			
PCB congener 101	<0.00	3 IM168			<0.003			
	mg/kę	]			M			
PCB congener 118	<0.00	3 TM168			< 0.003			
	mg/kę	9			М			
PCB congener 138	<0.00	3 TM168			< 0.003			
	mg/kę	g			Μ			
PCB congener 153	<0.00	3 TM168			<0.003			
	ma/ka	a			M			
PCB congener 180	<0.00	- 3 TM168			<0.003			
	-0.00 ma/kr	1			-0.000 M			
Sum of detected BCD 7	-0 00							
Congeners	<0.02 ~~//	.i iIVI108			SU.021			
	mg/K				0.070			
ANC @ pH 4	<0.0	3 TM182			0.276			
	mol/k	g						
ANC @ pH 6	<0.0	3 TM182			0.166			
	mol/k	g						
Polyaromatic	<10	TM213			<10			
hydrocarbons, Total 17	mg/kg	9						

ALcontrol Laboratories

_

## **CERTIFICATE OF ANALYSIS**

Validated

SDG:	160309-113	Location:	Valleyfields	Order Number:	405/8371
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	353745
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:	

Results Legend		Customer Sample R	VF4	VF5	VF6	VF7	VF8	VF9
# ISO17025 accredited.								
ag Aqueous / settled sample.								
diss.filt Dissolved / filtered sample.		Depth (m)	Calina Mater (Cal M)	Calina Water (Cal W)	Calina Water (Cal W)	Coline Water (Col W)	Calina Water (Cal W)	Calina Water (Cal W)
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled	07/03/2016	08/03/2016	08/03/2016	08/03/2016	08/03/2016	07/03/2016
** % recovery of the surrogate standa	rd to	Sample Time						
check the efficiency of the method.	The thin	Date Received	09/03/2016	09/03/2016	09/03/2016	09/03/2016	09/03/2016	09/03/2016
samples aren't corrected for the rec	covery	SDG Ref	160309-113	160309-113	160309-113	160309-113	160309-113	160309-113
(F) Trigger breach confirmed		Lab Sample No.(s)	13060788	13060793	13060794	13060795	13060796	13060789
Component		AGS Reference						
Conductivity @ 20 deg C		15 TM120	22.3	16.1	18.7	20.3	26.6	26.2
Conductivity @ 20 deg.0	-0.00 mS/cr	m	22.0 #	10.1	10.7	20.0 #	20.0 #	20.2
	110/0		#	#	#	#	#	#
Antimony (diss.filt)	<0.000	016 IM152	0.000167	0.000429	0.00125	0.000189	<0.00016	<0.0016
	mg/l							
Arsenic (diss.filt)	<0.000	12 TM152	0.00171	0.00838	0.0257	0.00582	0.0073	0.00584
	mg/l		#	#	#	#	#	#
Boron (diss.filt)	< 0.00	94 TM152	9.74	1.97	10	0.458	0.961	1.57
	ma/l		#			#	#	#
	-0.00		π 0.000500	π	π	π	π	π
Cadmium (diss.nit)	<0.00	01 110152	0.000596	<0.0001	0.000617	<0.0001	0.000504	<0.001
	mg/I		#	#	#	#	#	#
Chromium (diss.filt)	<0.000	022 TM152	0.0024	0.00312	0.00164	0.00219	0.00388	0.00382
	mg/l		#	#	#	#	#	#
Manganese (diss.filt)	<0.000	04 TM152	0.107	0.0252	0.0514	0.312	0.296	0.455
<u> </u>	ma/l		#	#	#	#	#	#
Molybdenum (diss filt)	<0.000	124 TM452	Π 382 U	0 00084	0 462 #	μ Π 0122	π 0 347	0 105
	~0.000		0.307	0.00064 ,,	0.403	0.0123	0.347 ,,	0.105
	mg/l		#	#	#	#	#	#
Selenium (diss.filt)	<0.000	039 TM152	0.00573	0.106	0.0142	0.0246	0.0469	0.0351
	mg/l		#	#	#	#	#	#
Vanadium (diss.filt)	<0.000	)24 TM152	<0.00024	0.00842	0.0403	< 0.00024	0.000286	0.00491
, , , , , , , , , , , , , , , , , , ,	ma/l		#	#	#	#	#	#
Sulphate	<2 m	a/l TM184	1350	241			1650	7/8
Suprate	~2 m	g/i 11v1104	1550	241	۵۱۵ س	404	1050 #	/40
			#	#	#	#	#	#
Chloride	<2 m	g/l TM184	8860	7160	7540	9970	10800	11800
			#	#	#	#	#	#
Sodium (diss.filt)	<0.07	76 TM228	3900	3190	3500	3200	4790	5330
, , , , , , , , , , , , , , , , , , ,	ma/l		#	#	#	#	#	#
Magnesium (diss filt)	<0.03	26 TM228		270	54.7	407	504	606
Magnesium (diss.int)	~0.0C	111/220	410 4	219 11	J4.7	451	- <del>1</del>	090
	mg/i		#	#	#	#	#	#
рН	<1 pl	H TM256	7.63	8.38	8.15	7.43	7.67	7.27
	Units	6	#	#	#	#	#	#
(

#### **CERTIFICATE OF ANALYSIS**

Results Legend		Customer Sample R	VF10	VF11	VF12	VF3D	
#     ISO17025 accredited.       M     mCERTS accredited.							
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)					
tot.unfilt Total / unfiltered sample.		Sample Type	Saline Water (Sal W)				
** % recovery of the surrogate standa	rd to	Sample Time					
check the efficiency of the method. results of individual compounds wi	The thin	Date Received	09/03/2016	09/03/2016	09/03/2016	09/03/2016	
samples aren't corrected for the rec	overy	SDG Ref	160309-113 13060797	160309-113 13060798	160309-113 13060799	160309-113 13060792	
1-5&+§@ Sample deviation (see appendix)		AGS Reference					
Component	LOD/Ur	nits Method					 
Conductivity @ 20 deg.C	<0.00	05 IM120	16.4	1.97	1.24	5.43	
Asthered (disc 510)	m5/cr		#	#	#	#	
Antimony (diss.fiit)	<0.000	016 IM152	0.00185	<0.00016	0.000402	0.000239	
Aroopia (diaa filt)	<0.000	12 TM152	0.00701	0.000462	0.0006	0.00226	
	-0.000 ma/l		0.00701	0.000405	0.0000 #	0.00220	
Boron (diss filt)	<0.00	94 TM152	9 78	0 334	0 343		 
	ma/l		#	#	#	#	
Cadmium (diss.filt)	< 0.00	01 TM152	0.000439	<0.0001	<0.0001	<0.0001	
	mg/l		#	#	#	#	
Chromium (diss.filt)	<0.000	)22 TM152	0.00263	0.00286	0.0019	0.00186	
	mg/l		#	#	#	#	
Manganese (diss.filt)	<0.000	004 TM152	0.269	0.0762	0.0624	0.178	
	mg/l		#	#	#	#	
Molybdenum (diss.filt)	<0.000	)24 TM152	0.233	0.000458	0.00193	0.00136	
	mg/l		#	#	#	#	
Selenium (diss.filt)	<0.000	039 TM152	0.0233	0.00239	0.00075	0.0132	
	mg/l		#	#	#	#	
Vanadium (diss.filt)	<0.000	024 TM152	0.000437	0.000626	0.000606	0.00108	
	mg/l		#	#	#	#	
Sulphate	<2 m	g/l TM184	625	15.2	<2	2.3	
			#	#	#	#	
Chloride	<2 m	g/l TM184	6710	477	254	1860	
			#	#	#	#	 
Sodium (diss.filt)	<0.07	76 TM228	3190	299	140	903	
	mg/l	T 4000	#	#	#	#	 
Magnesium (diss.filt)	<0.03	36 I M228	226	28.9	19.9	96.5	
			7.61	7.52	*	7 75	 
рп	< i pi		7.01	1.52	0.02	1.15	
	Office	,	#	<del>π</del>	#	#	
							7

ALcontrol Lab	oratories	3	CE	т					Validated
SDG:     16       Job:     H_       Client Reference:     40	0309-113 _SLR_EDH- 5 00481 00	58	Location: Customer:	Va Sl	Illeyfields R Consulting Ltd	Order Number: Report Number Superseded Re	: port:	405/8371 353745	
GRO by GC-FID (S)	5.00401.00	000	Attention.	20		 ouperseulerite	port.		
Results Legend # ISO17025 accredited.		Customer Sample R	PFA						
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogates i check the efficiency of the me results of individual compoun samples aron't corrected for th	andard to thod. The ds within ne recovery	Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref	Soil/Solid 07/03/2016 09/03/2016 160309-113 13060787						
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see append	ix)	AGS Reference	10000101						
Component Methyl tertiary butyl ether	LOD/U	nits Method	<0.01						
(MTBE)	mg/k	sg	-0.01	#					
Benzene	<0.0 mg/k	)1 TM089 sg	<0.02	м					
Toluene	<0.0 mg/k	02 TM089 sg	<0.004	М					
Ethylbenzene	<0.0 mg/k	03 TM089 .g	<0.006	М					
m,p-Xylene	<0.0 mg/k	06 TM089 sg	<0.012	М					
o-Xylene	<0.0 mg/k	03 TM089 sg	<0.006	М					
sum of detected mpo xylene by GC	<0.0 mg/k	09 TM089 ig	<0.009						
sum of detected BTEX by GC	<0.0 mg/k	24 TM089 sg	<0.024						

	oratories	,	CERT	IFICATE OF A	ANALYSIS			vanualeu
SDG: 16 Job: H Client Reference: 40	60309-113 _SLR_EDH⊣ 05.00481.000	58 033	Location: V Customer: S Attention: Z	alleyfields ER Consulting Ltd ak Ritchie		Order Number: Report Number Superseded Re	405/8371 : 353745 port:	
AH Spec MS - Aque	ous (W)	-						
Results Legend # ISO17025 accredited. M mCERTS accredited.		Customer Sample R	ES1	ES2	SN	TD	VF1	VF4
aq Aqueous / settied sample. diss.filt Dissolved / filtered sample. total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate s book the officiancy of the m	standard to	Depth (m) Sample Type Date Sampled Sample Time	Saline Water (Sal W) 07/03/2016	Saline Water (Sal W) 07/03/2016	Saline Water (Sal W) 07/03/2016	Saline Water (Sal W) 07/03/2016	Saline Water (Sal W) 08/03/2016	Saline Water (Sal W) 07/03/2016
results of individual compour samples aren't corrected for (F) Trigger breach confirmed	nds within the recovery	Date Received SDG Ref Lab Sample No.(s)	09/03/2016 160309-113 13060782	09/03/2016 160309-113 13060783	09/03/2016 160309-113 13060785	09/03/2016 160309-113 13060784	09/03/2016 160309-113 13060790	09/03/2016 160309-113 13060788
Component	LOD/U	nits Method						
Naphthalene (aq)	<0.00 mg/	01 TM178 I	<0.0001 #	<0.0001	<0.0001 #	<0.0001 #	<0.0001 #	<0.0001
Acenaphthene (aq)	<0.0000	TM178 015	<0.000015 #	<0.000015	0.000026 #	<0.000015 #	<0.000015 #	<0.000015
Acenaphthylene (aq)	<0.000	TM178 011	<0.000011 #	<0.000011	<0.000011 #	<0.000011 #	<0.000011 #	<0.000011
Fluoranthene (aq)	<0.0000	TM178	<0.000017 #	<0.000017	<0.000017 #	<0.000017 #	<0.000017 #	<0.000017
Anthracene (aq)	<0.0000	TM178 015	<0.000015 #	<0.000015	<0.000015 #	<0.000015 #	<0.000015 #	<0.000015
Phenanthrene (aq)	<0.0000	TM178	<0.000022 #	<0.000022	<0.000022	<0.000022 #	<0.000022 #	<0.000022
Fluorene (aq)	<0.0000	TM178	<0.000014 #	<0.000014	<0.000014 #	<0.000014 #	<0.000014 #	<0.000014
Chrysene (aq)	<0.0000	TM178	<0.000013 #	<0.000013 #	<0.000013 #	<0.000013 #	<0.000013 #	<0.000013
Pyrene (aq)	<0.0000	TM178	<0.000015 #	<0.000015	<0.000015 #	<0.000015 #	<0.000015 #	<0.000015
Benzo(a)anthracene (aq)	<0.0000	TM178	<0.000017 #	<0.000017 #	<0.000017 #	<0.000017 #	<0.000017 #	<0.000017
Benzo(b)fluoranthene (aq)	<0.000	TM178	<0.000023	<0.000023	<0.000023 #	<0.000023 #	<0.000023 #	<0.000023
Benzo(k)fluoranthene (aq)	<0.0000	TM178	<0.000027 #	<0.000027	<0.000027 #	<0.000027 #	<0.000027 #	<0.000027
Senzo(a)pyrene (aq)	<0.0000	TM178	<0.000009 #	<0.00009	<0.00009	<0.00009 #	<0.00009 #	<0.00009
Dibenzo(a,h)anthracene aq)	<0.0000	TM178	<0.000016 #	<0.000016	<0.000016 #	<0.000016 #	<0.000016 #	<0.000016
Benzo(g,h,i)perylene (aq)	<0.0000	TM178	<0.000016 #	<0.000016 #	<0.000016 #	<0.000016 #	<0.000016 #	<0.000016
ndeno(1,2,3-cd)pyrene aq)	<0.0000	TM178	<0.000014 #	<0.000014 #	<0.000014 #	<0.000014 #	<0.000014 #	<0.000014
PAH, Total Detected JSEPA 16 (aq)	<0.0003	TM178	<0.000344	<0.000344	<0.000344	<0.000344	<0.000344	<0.000344

	atories	2	CERT	IFICATE OF A	NALYSIS			valluated
SDG:     1603       Job:     H_SI       Client Reference:     405.0	09-113 LR_EDH- 00481.000	58 033	Location: V Customer: S Attention: Z	′alleyfields SLR Consulting Ltd ′ak Ritchie		Order Number: Report Number Superseded Re	405/8371 : 353745 port:	
AH Spec MS - Aqueou	s (W)							
Results Legend       #     ISO17025 accredited.       M     mCERTS accredited.		Customer Sample R	VF5	VF6	VF7	VF8	VF9	VF10
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. ot.unfilt Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate stanc check the efficiency of the method	lard to	Depth (m) Sample Type Date Sampled Sample Time	Saline Water (Sal W) 08/03/2016	Saline Water (Sal W) 08/03/2016	Saline Water (Sal W) 08/03/2016	Saline Water (Sal W) 08/03/2016	Saline Water (Sal W) 07/03/2016	Saline Water (Sal W 08/03/2016
results of individual compounds v samples aren't corrected for the n	within ecovery	Date Received SDG Ref	09/03/2016 160309-113 13060793	09/03/2016 160309-113 13060794	09/03/2016 160309-113 13060795	09/03/2016 160309-113 13060796	09/03/2016 160309-113 13060789	09/03/2016 160309-113 13060797
-5&+§@ Sample deviation (see appendix)		AGS Reference	10000100	10000101	10000100	10000100	10000100	
Component Naphthalene (aq)	<0.00	nits Method 01 TM178	<0.001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
cenaphthene (ag)	mg/l	I TM178	# <0.00015	# <0.000015	# <0.000015	#	#	<0.000015
	<0.0000	)15 TM179	#	#	#	#	#	<0.000011
cenaphinylene (aq)	<0.000	D11	<0.00011	<0.000011 #	<0.000011 #	<0.000011 #	<0.000011 #	<0.000011
luoranthene (aq)	<0.0000	TM178	<0.00017	<0.000017	<0.000017 #	<0.000017 #	<0.000017	<0.000017
Anthracene (aq)	<0.0000	TM178	<0.00015	<0.000015	<0.000015 #	<0.000015 #	<0.000015	<0.000015
Phenanthrene (aq)	<0.000	TM178	<0.00022	<0.000022	<0.000022	<0.000022	<0.000022	<0.000022
Fluorene (aq)		TM178	# <0.00014	<pre>#</pre>	# <0.000014 ,,	# <0.000014 	# <0.000014 	<0.000014
Chrysene (aq)		TM178	# <0.00013	<0.000013	# <0.000013	# <0.000013	# <0.000013	<0.000013
Pyrene (aq)	<0.0000	TM178	# <0.00015	# <0.000015	# <0.000015	# <0.000015	# <0.000015	0.000023
Benzo(a)anthracene (aq)	<0.0000	015 TM178	# <0.00017	# # <0.000017	# <0.000017	# <0.000017	# <0.000017	<0.000017
Benzo(b)fluoranthene (aq)	<0.0000	017 TM178	# <0.00023	# # <0.000023	# <0.000023	# <0.000023	# <0.000023	<0.000023
Benzo(k)fluoranthene (aq)	<0.0000	023 TM178	# <0.00027	# <0.000027	# <0.000027	#	# <0.000027	<0.000027
Benzo(a)pyrene (aq)	<0.0000	027 TM178	#	# <b>#</b> <0.000009	# <0.00009	#	# <0.00009	<0.00009
)ibenzo(a.h)anthracene	<0.0000	009 TM178	# <0.00016	# <0.000016	# <0.000016	#	# <0.000016	<0.000016
aq)	<0.0000	016 TM179	<0.00016	<pre>#</pre>	<0.000016	<0.000016	<0.000016	<0.000016
	<0.0000	016	~0.00010 #	×0.000010 #	<0.000010 #	~0.000010 #	~0.000010 #	NU.UUUU 10
ndeno(1,2,3-cd)pyrene aq)	<0.0000	IM178 014	<0.00014 #	<0.000014	<0.000014 #	<0.000014 #	<0.000014 #	<0.000014
PAH, Total Detected JSEPA 16 (aq)	<0.0003	TM178 344	<0.00344	<0.000344	<0.000344	<0.000344	<0.000344	<0.000344
				1				•

	160200 1	113					Order Number:	405/8371	
Job:	H_SLR_E	EDH-58	8	Customer: SL	R Consulting Ltd		Report Number:	353745	
Client Reference:	405.0048	31.0003	33	Attention: Za	ak Ritchie		Superseded Report:		
Results Leg # ISO17025 accredited	gend	<b>N</b> )	Customer Sample R	VF11	VF12	VF3D			
M mCERTS accredited. aq Aqueous / settled sar	nple.		Depth (m)						
diss.filt Dissolved / filtered sa ot.unfilt Total / unfiltered sam * Subcontracted test.	ample. ple.		Sample Type Date Sampled	Saline Water (Sal W) 08/03/2016	Saline Water (Sal W) 08/03/2016	Saline Water (Sal W) 08/03/2016			
** % recovery of the su check the efficiency of	rogate standard to of the method. The		Sample Time	09/03/2016					
results of individual o samples aren't correc	compounds within the recover	ry	SDG Ref	160309-113	160309-113	160309-113			
(F) Trigger breach confir 5&+§@ Sample deviation (se	med e appendix)	0.0.41	AGS Reference	13000730	13000733	13000732			
aphthalene (aq)	L	<0.000	1 TM178	<0.0001	<0.0001	<0.0001			
cenaphthene (ag)		mg/l	TM178	#	# <0.000015	# <0.000015			
	<0	0.00001	15	#	#	#			
cenaphthylene (aq)	<0	0.0000 ⁻	TM178 11	<0.000011 #	<0.000011 #	<0.000011 #			
uoranthene (aq)		0000	TM178	<0.000017	0.000035	<0.000017			
nthracene (aq)	<0	1.00001	TM178	# <0.000015	# <0.000015	# <0.000015			
	<0	0.00001	15	#	#	#			
nenanthrene (aq)	<0	0.00002	1M178 22	<0.000022 #	0.000029 #	<0.000022 #			
luorene (aq)			TM178	<0.000014	<0.000014 "	<0.000014			
hrysene (aq)	<0	.00001	TM178	#	# <0.000013	# <0.000013			
	<0	0.00001	13 TM170	# <0.00015	#	#			
yrene (aq)	<0	0.00001	15	~0.000015	0.000073	~0.000015 #			
enzo(a)anthracene	(aq)	) 00001	TM178	<0.000017	<0.000017 #	<0.000017			
enzo(b)fluoranthene	e (aq)		TM178	<0.000023	<0.00023	<0.00023			
enzo(k)fluoranthen	<0> (au)	0.00002	23 TM178	# <0.00027	# <0.00027	# <0.000027			
	<0	0.00002	27	-0.000027	-0.000027	-0.000027 #			
enzo(a)pyrene (aq)	<0	0.0000	TM178	<0.000009 #	<0.00009 #	<0.00009 #			
ibenzo(a,h)anthrace	ene		TM178	<0.000016	<0.000016	<0.000016			
enzo(g,h,i)pervlene	(aq)	1.00001	тм178	# <0.000016	# <0.000016	# <0.000016			
	<0	0.00001	16	#	#	#			
ideno(1,2,3-cd)pyre aq)	ne <0	0.00001	TM178	<0.000014 #	<0.000014 #	<0.000014 #			
AH, Total Detected	-0	0003/	TM178	<0.000344	<0.000344	<0.000344			
SEFA TO (aq)	~0	.0003-	**						
			_						
			_						
					1				

SDG:

Job:

**Client Reference:** 

160309-113

H_SLR_EDH-58

405.00481.00033

#### **CERTIFICATE OF ANALYSIS**

Valleyfields

Zak Ritchie

SLR Consulting Ltd

Location:

Customer:

Attention:

Validated

**REF : BS EN 12457/2** 

405/8371

353745

Order Number:

Report Number:

Superseded Report:

0.06

0.1

4

800

10

1000

4000

1

500

0.7

0.5

50

15000

150

20000

60000

800

5

7

200

25000

500

50000

100000

1000

< 0.0016

< 0.0039

< 0.0041

<20

<5

<20

<50

<0.16

<30

<b>CEN 10:1 SINGLE</b>	STAGE	LEACHATE	TEST
------------------------	-------	----------	------

#### WAC ANALYTICAL RESULTS

Client Reference		Site Location	Valleyfield
Mass Sample taken (kg)	0.146	Natural Moisture Content (%)	62.4
Mass of dry sample (kg)	0.175	Dry Matter Content (%)	61.6
Particle Size <4mm	>95%		

Case SDG	ase DG 160309-113	
Lab Sample Number(s)	13060787	
Sampled Date	07-Mar-2016	
Customer Sample Ref.	PFA	
Depth (m)		
Solid Waste Analysis	Result	
Total Organic Carbon (%)	11.8	
Loss on Ignition (%)	7.28	
Sum of BTEX (mg/kg)	<0.024	
Sum of 7 PCBs (mg/kg)	<0.021	
Mineral Oil (mg/kg)	3.73	
ALL Sum of 17 (mg/kg)	<10	

PAH Sum of 17 (mg/kg)	<10				100	-	-	
pH (pH Units)	9.77				-	<6	-	
ANC to pH 6 (mol/kg)	0.166				-	-	-	
ANC to pH 4 (mol/kg)	0.276				-	-	-	
Eluate Analysis	C ₂ Conc ⁿ in 1	.0:1 eluate (mg/l)	A2 10:1 conc ^r	leached (mg/kg)	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg			
	Result	Limit of Detection	Result	Limit of Detection				
Arsenic	0.138	<0.00012	1.38	<0.0012	0.5	2	25	
Barium	0.203	<0.00003	2.03	<0.0003	20	100	300	
Cadmium	0.000145	<0.0001	0.00145	<0.001	0.04	1	5	
Chromium	0.0499	<0.00022	0.499	<0.0022	0.5	10	70	
Copper	<0.00085	<0.00085	<0.0085	<0.0085	2	50	100	
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2	
Molybdenum	0.0983	<0.00024	0.983	<0.0024	0.5	10	30	
Nickel	<0.00015	<0.00015	<0.0015	<0.0015	0.4	10	40	
Lead	0.000082	<0.00002	0.00082	<0.0002	0.5	10	50	

0.471

4.8

< 0.0041

1010

10.1

532

4570

<0.16

<30

Date Prepared	10-Mar-2016
pH (pH Units)	9.83
Conductivity (µS/cm)	599.00
Temperature (°C)	18.60
Volume Leachant (Litres)	0.844

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

0.0471

0.48

< 0.00041

101

1.01

53.2

457

<0.016

<3

< 0.00016

< 0.00039

< 0.00041

<2

<0.5

<2

<5

<0.016

<3

Mcerts Certification does not apply to leachates

Antimony

Selenium

Chloride

Fluoride

Sulphate (soluble)

Total Dissolved Solids

Total Monohydric Phenols (W)

Dissolved Organic Carbon

Zinc

#### **CERTIFICATE OF ANALYSIS**

Validated

## Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample_1	Surrogate Corrected
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step		
TM018	BS 1377: Part 3 1990	Determination of Loss on Ignition		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water		
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser		
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter		
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water		
TM132	In - house Method	ELTRA CS800 Operators Guide		
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils		
TM178	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS in Waters		
TM182	CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM213	In-house Method	Rapid Determination of PAHs by GC-FID		
TM228	US EPA Method 6010B	Determination of Major Cations in Water by iCap 6500 Duo ICP-OES		
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter		
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

#### **CERTIFICATE OF ANALYSIS**

Validated

SDG:	160309-113	Location:	Valleyfields	Order Number:	405/8371
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	353745
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:	

# **Test Completion Dates**

Lab Sample No(s)	13060782	13060783	13060787	13060785	13060784	13060790	13060788	13060793	13060794	13060795
Customer Sample Ref.	ES1	ES2	PFA	SN	TD	VF1	VF4	VF5	VF6	VF7
AGS Ref.										
Depth										
Type	SALINE D	SALINE D	SOLID	SALINE D	SALINE C	SALINE D	SALINE C	SALINE C	SALINE C	SALINE C
		O/ LINE_D	15 Mar 2016	O/ LINE_D	O/ LINE_O	O/ LINE_D	O, LEINE_O	O/ LEINE_O	O/ LEINE_O	O/LINE_O
	14 Mar 2016	11 Mar 2016	15-Mar-2016	11 Mar 2016	14 Mar 2016	11 Mar 2016	14 Mar 2016	11 Mar 2016	14 Mar 2016	11 Mar 2016
CEN 10:1 Leachate (1 Stage)	14-10181-2010	11-10101-2010	10-Mar-2016	11-10181-2010	14-10181-2010	11-10101-2010	14-10101-2010	11-10101-2010	14-10181-2010	11-Mai-2010
CEN Readings			11-Mar-2016							
Conductivity (at 20 deg C)	15-Mar-2016	15-Mar-2016	11 Mai 2010	15-Mar-2016						
Dissolved Metals by ICP-MS	17-Mar-2016	17-Mar-2016	14-Mar-2016	17-Mar-2016						
Dissolved Organic/Inorganic Carbon	11 11101 2010	11 11101 2010	14-Mar-2016	11 11101 2010	11 11101 2010	11 11101 2010	11 11101 2010	11 11101 2010	11 11101 2010	11 11101 2010
Fluoride			14-Mar-2016							
GRO by GC-FID (S)			16-Mar-2016							
Loss on Ignition in soils			16-Mar-2016							
Mercury Dissolved			14-Mar-2016							
Metals by iCap-OES Dissolved (W)	15-Mar-2016	15-Mar-2016		15-Mar-2016	15-Mar-2016	15-Mar-2016	15-Mar-2016	11-Mar-2016	15-Mar-2016	15-Mar-2016
Mineral Oil			16-Mar-2016							
PAH Spec MS - Aqueous (W)	15-Mar-2016	14-Mar-2016		15-Mar-2016	15-Mar-2016	14-Mar-2016	14-Mar-2016	14-Mar-2016	15-Mar-2016	15-Mar-2016
PAH Value of soil			14-Mar-2016							
PCBs by GCMS			15-Mar-2016							
pН			11-Mar-2016							
pH Value	11-Mar-2016	11-Mar-2016		11-Mar-2016						
Phenols by HPLC (W)			14-Mar-2016							
Sample description			10-Mar-2016							
Total Dissolved Solids			15-Mar-2016							
Total Organic Carbon			14-Mar-2016							
Lab Sample No(s)	13060796	13060789	13060797	13060798	13060799	13060792				
Customer Sample Ref.	VF8	VF9	VF10	VF11	VF12	VF3D				
AGS Ref.										
Depth										
eqvT	SALINE D	SALINE D	SALINE C	SALINE B	SALINE B	SALINE B				
Anions by Kone (w)	14-Mar-2016	14-Mar-2016	11-Mar-2016	16-Mar-2016	14-Mar-2016	14-Mar-2016				
Conductivity (at 20 deg C)	15-Mar-2016	15-Mar-2016	15-Mar-2016	15-Mar-2016	15-Mar-2016	15-Mar-2016				
Dissolved Metals by ICP-MS	17-Mar-2016	17-Mar-2016	17-Mar-2016	17-Mar-2016	17-Mar-2016	17-Mar-2016				
Metals by iCap-OES Dissolved (W)	15-Mar-2016	15-Mar-2016	14-Mar-2016	11-Mar-2016	14-Mar-2016	15-Mar-2016				
PAH Spec MS - Aqueous (W)	14-Mar-2016	15-Mar-2016	15-Mar-2016	15-Mar-2016	15-Mar-2016	14-Mar-2016				
pH Value	11-Mar-2016	11-Mar-2016	11-Mar-2016	11-Mar-2016	11-Mar-2016	11-Mar-2016				
b							l I			

#### **CERTIFICATE OF ANALYSIS**

SDG:	160309-113	Location:	Valleyfields	Order Number:	405/8371
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	353745
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:	

### Appendix

**ALcontrol Laboratories** 

#### General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP - No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately

11. Results relate only to the items tested.

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment . Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect

14. Product analyses - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, and Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol)

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17 Stones/debris are not routinely removed. We always endeavour to take а representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis

21. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

### Sample Deviations

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
0	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

#### Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised liaht microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	WhiteAsbestos
Amosite	BrownAsbestos
Crodobite	Blue Asbestos
Fibraus Adinate	-
Florous Anthophylite	-
Fibrous Trendile	-

#### Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.



SLR Consulting Ltd Floor 2 4/5 Lochside View Edinburgh Park Edinburgh Lanarkshire EH12 9DH

Attention: Zak Ritchie

## **CERTIFICATE OF ANALYSIS**

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 24 June 2016 H_SLR_EDH 160608-88 405.00481.00033 Valleyfields 366319

We received 15 samples on Wednesday June 08, 2016 and 15 of these samples were scheduled for analysis which was completed on Friday June 24, 2016. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan Operations Manager



Alcontrol Laboratories is a trading division of ALcontrol UK Limited Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No.

#### **CERTIFICATE OF ANALYSIS**

Validated

-					
SDG:	160608-88	Location:	Valleyfields	Order Number:	405/8478
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	366319
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:	

# **Received Sample Overview**

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
13558086	ES1			06/06/2016
13558087	ES2			06/06/2016
13558271	PFA			06/06/2016
13558085	TD			06/06/2016
13558079	VF1			06/06/2016
13558090	VF4			07/06/2016
13558080	VF5			06/06/2016
13558081	VF6			06/06/2016
13558083	VF7			06/06/2016
13558091	VF8			07/06/2016
13558084	VF9			06/06/2016
13558092	VF10			07/06/2016
13558093	VF11			07/06/2016
13558094	VF12			07/06/2016
13558088	VF3D			07/06/2016

Only received samples which have had analysis scheduled will be shown on the following pages.

ALcontrol L	aborator	ies	С	FR	ті	FIG	CΔ	TF	= c	)F	ΔΙ	NZ	71.	YS	315														[		Validated
SDG: Job: Client Reference:	160608-88 H_SLR_EI 405.00481	DH-58 .00033	Location Custome Attention	 r: 1:	Va SL Za	lley R C k R	field Cons itchi	ls sulti ie	ng l	Ltd								C F S	Drde Rep Gup	er N ort ers	lun Nu ede	nbe mb ed l	er: er: Rep	ort	:	4( 3(	05/8 663	347 19	8		
Saline Water (Sal Results Legend X Test	<b>W</b> )	Lab Sample	e No(s)		13558086		13558087		13558085		13558079			13558000		13558080		13558081		13558083		13558091		13330004	100001	10000001	13558092		13558093	13558094	
No Determina Possible	tion	Custon Sample Ref	ner ference		ES1		ES2		TD		VF1	i		VEA		VF5		VF6		VF7		VF8		V F 9	XT0		VE10		VF11	VF12	
		AGS Refe	rence																												
		Depth (	(m)																												
		Contair	ner	0.51 glass bottle (ALE2	HNO3 Filtered (ALE	0.5I glass bottle (AL	HNO3 Filtered (ALE	0.5I glass bottle (AL	500ml Plastic (ALE	0.5I glass bottle (AL	500ml Plastic (ALE	0.5I glass bottle (AL	500ml Plastic (ALE2	0.5l glass bottle (AL	500ml Plastic (ALE2	U.5I glass bottle (AL HNO3 Filtered (ALE	500ml Plastic (ALE2	HNO3 Filtered (ALE	0 51 glass hottle (ALE2	HNO3 Filtered (ALE	0.51 glass bottle (AL	HNO3 Filtered (ALE	0.5l glass bottle (AL	500ml Plastic (ALE2	0.5I glass bottle (AL	500ml Plastic (ALE2	0.5I glass bottle (AL HNO3 Filtered (AL	500ml Plastic (ALE2	HNO3 Filtered (ALE	0.5I glass bottle (AL	
Anions by Kone (w)		All	NDPs: 0 Tests: 14	<b>,</b>	<mark>(</mark>		×		x		x		x		x		x		x		)	C		x		x		x			
Conductivity (at 20 deg.C)		All	NDPs: 0 Tests: 14	<b>,</b>	C		x		x		x		x		x		x		x		)	<		x		x		x			
Dissolved Metals by ICP-N	IS	All	NDPs: 0 Tests: 14		x		x		x		x	<u> </u>		×		x		x		x		x		)	< C		x		x		
Metals by iCap-OES Disso	lved (W)	All	NDPs: 0 Tests: 14		x		x		x		x			x		x		x		x		x		)	<mark>(</mark>		x		x		
PAH Spec MS - Aqueous (	W)	All	NDPs: 0 Tests: 14	x		x		x		x		x		x	<u> </u>	×	<u> </u>	2	x		x		x		x		x			x	
pH Value		All	NDPs: 0 Tests: 14	<b>)</b>	<pre>c</pre>		×		x		x		x		x		x		x		)	<		x		x		x			

ALcontrol L	_aborator	ies	С	ER [.]	TIFIC	ATE OF ANALY	'SIS	L	Validat
SDG: Job: Client Reference:	160608-88 H_SLR_EI 405.00481	; DH-58 .00033	Location: Custome Attention	: r: i:	Valleyfie SLR Co Zak Rite	elds nsulting Ltd chie	Order Number: Report Number: Superseded Report:	405/8478 366319	
Saline Water (Sal Results Legend X Test	I <b>W</b> )	Lab Sample	e No(s)	13558094	13558088				
No Determina Possible	ation	Custom Sample Ref	ner erence	VF12	VF3D				
		AGS Refe	rence						
		Depth (	m)						
		Contair	ner	500ml Plastic (ALE	HNO3 Filtered (ALE 500ml Plastic (ALE2 0.5l glass bottle (AL				
Anions by Kone (w)		All	NDPs: 0 Tests: 14	x	x				
Conductivity (at 20 deg.C	)	All	NDPs: 0 Tests: 14	x	x				
Dissolved Metals by ICP-I	MS	All	NDPs: 0 Tests: 14	×	x				
Metals by iCap-OES Diss	olved (W)	All	NDPs: 0 Tests: 14	x	x				
PAH Spec MS - Aqueous	(W)	All	NDPs: 0 Tests: 14		x				
pH Value		All	NDPs: 0 Tests: 14	x	x				

SDG:	160608-88	Location	i: Va
Job: Client Reference:	H_SLR_EDH-58 405.00481.00033	Custome Attention	ər: SL n: Za
SOLID			
Results Legend	Lab	Sample No(s)	135582
X Test			271
No Determina	ation		
Possible	c	Customer	ס
	Samp	ole Reference	FA
	AG	S Reference	
		Depth (m)	
			N o
			0g VO 50g Ar 1k
	C	Container	C (ALE nber Ja g TUB
			=215) ar (AL
ANC at pH4 and ANC at p	DH 6 All	NDPs: 0 Tests: 1	
Anions by Kone (w)			X
	7.01	Tests: 1	x
CEN Readings	All	NDPs: 0	
		Tests: 1	x
Dissolved Metals by ICP-I	MS All	NDPs: 0 Tests: 1	
			x
Dissolved Organic/Inorgai Carbon	nic All	NDPs: 0 Tests: 1	Y
Fluoride	All	NDPs: 0	×
		Tests: 1	x
GRO by GC-FID (S)	All	NDPs: 0	
		Tests. T	x
Loss on Ignition in soils	All	NDPs: 0 Tests: 1	
Mercury Dissolved	All		X
		Tests: 1	X
Mineral Oil	All	NDPs: 0	
		Tests: 1	x
PAH Value of soil	All	NDPs: 0 Tests: 1	
DCDa by COMP			x
-CBS by GCM3		NDPs: 0 Tests: 1	Y
рН	All	NDPs: 0	^
		Tests: 1	x
Phenols by HPLC (W)	All	NDPs: 0	
		Tests. T	x
ample description	All		

ALcontrol L	.aboratori	ies	~					Validated
			CE	RTI	FICATE OF ANALYSIS			
SDG: Job: Client Reference:	160608-88 H_SLR_ED 405.00481.	0H-58 00033	Location: Customer: Attention:	Val SLI Zal	leyfields R Consulting Ltd Ritchie	Order Number: Report Number: Superseded Report:	405/8478 366319	
SOLID Results Legend		Lab Sample N	lo(s)	13558271				
No Determina Possible	ation	Custome Sample Refer	r ence	PFA				
		AGS Refere	nce					
		Depth (m	)					
		Containe	r -o	60g VOC (ALE215) 250g Amber Jar (AL				
Total Dissolved Solids		All	NDPs: 0 Tests: 1	<mark>k</mark>				
Total Organic Carbon		All	NDPs: 0 Tests: 1	x				

ALcontrol I	_aboratories					Validated
		CEF	RTIFICATE OF ANALYSIS			
SDG:	160608-88	Location:	Valleyfields	Order Number:	405/8478	
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	366319	
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:		

## **Sample Descriptions**

Grain Sizes													
very fine	<0.	063mm	fine	0.063mm - 0.1mm	medium	0.1mm	n - 2mm	coar	se 2mm - 1	Omm	very coa	rse	>10mm
Lab Sample	No(s)	Custom	er Sample Re	f. Depth (m)	Ca	olour	Descripti	on	Grain size	Inclu	usions	Inclu	sions 2
1355827	1		PFA		(	Grey	Sandy Silt L	oam	0.063 - 2.00 mm	N	one	N	one

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

_

#### **CERTIFICATE OF ANALYSIS**

SDG:	160608-88	Location:	Valleyfields	Order Number:	405/8478
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:	300319

Results Legend		Customer Sample R	ES1	ES2	PFA	TD	VF1	VF4
M mCERTS accredited.								
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)						
tot.unfilt Total / unfiltered sample.		Sample Type	Saline Water (Sal W)	Saline Water (Sal W)	Soil/Solid	Saline Water (Sal W)	Saline Water (Sal W)	Saline Water (Sal W)
** % recovery of the surrogate standa	rd to	Sample Time						
check the efficiency of the method. results of individual compounds wi	The thin	Date Received	08/06/2016	08/06/2016	08/06/2016	08/06/2016	08/06/2016	08/06/2016
samples aren't corrected for the rec	covery	SDG Ref	160608-88	160608-88 13558087	160608-88	160608-88	160608-88 13558079	160608-88
1-5&+§@ Sample deviation (see appendix)		AGS Reference						
Component	LOD/Uni	its Method						
Conductivity @ 20 deg.C	<0.00	5 IM120	37.7	34.4		22	17.1	24.8
	mS/cm		#	#		#	#	#
Antimony (diss.filt)	<0.000	16 IM152	<0.0016	0.00574		0.000966	<0.00016	0.000236
	ing/i	10 71450	0.0500	0.0555		0.0101	0.0450	0.047
Arsenic (diss.nit)	<0.000	12 11/1152	0.0582	0.0555		0.0184	0.0156	0.017
Deren (dies filt)	-0.000	M TM150	2.02	#		#	#	
Boron (diss.nit)	<0.008	1111132	3.02 #	5.21 #		4.42 #	0.301 #	5.77 #
Cadmium (diss filt)		1 TM152	0.0108	0.00051		0.00255	# 0.00101	# 0.00144
Cadmium (diss.mt)	-0.000 ma/l	1 111132	0.0100 #	0.00951		0.00233	0.00101	0.00144 #
Chromium (diss filt)	<0.000	22 TM152	0.00656	0.00627		0.00131	0.00177	0.00352
	ma/l		#	#		#	#	#
Manganese (diss.filt)	<0.000	04 TM152	0.00155	0.017		0.11	0.181	0.0841
·······	mg/l		#	#		#	#	
Molvbdenum (diss.filt)	< 0.000	24 TM152	< 0.0024	0.00501		0.665	0.00109	0.233
	mg/l		#	#		#	#	#
Selenium (diss.filt)	<0.000	39 TM152	0.191	0.178		0.0503	0.0534	0.0567
, , , , , , , , , , , , , , , , , , ,	mg/l		#	#		#	#	#
Vanadium (diss.filt)	<0.000	24 TM152	<0.0024	<0.0024		0.0523	<0.00024	<0.00024
	mg/l		#	#		#	#	#
Sulphate	<2 mg	g/l TM184	2400	2190		1530	830	1520
-	-		#	#		#	#	#
Chloride	<2 mg	g/l TM184	17900	16700		10900	10800	10800
	-		#	#		#	#	#
Sodium (diss.filt)	<0.07	6 TM228	7930	8790		6740	5100	5470
	mg/l		#	#		#	#	#
Magnesium (diss.filt)	<0.03	6 TM228	965	1070		225	562	556
	mg/l		#	#		#	#	#
рН	<1 p⊦	H TM256	7.8	7.89		8.23	7.44	7.68
	Units		#	#		#	#	#
Moisture Content Ratio (%	%	PM024			110			
of as received sample)								
Loss on ignition	<0.7 %	% TM018			17.6			
					M			
Mineral oil >C10-C40	<1 mg/	/kg TM061			17.4			
Mineral Oil Surrogate %	%	TM061			95.2			
recovery**								
Organic Carbon, Total	<0.2 %	% TM132			6.76			
					M			
рН	1 pH	TM133			9.16			
	Units				M			
PCB congener 28	<0.00	3 IM168			<0.003			
DCD congester 50	під/кд				M			
PGB congener 52	<0.000	S 11V1168			<0.003			
PCB congener 101	-0.00	3 TN/160						
FCB congenier 101	~0.00. ma/ka				<0.003 M			
PCB congener 118		3 TM169						
T OB congenier 110	~0.000 ma/ka	1			чо.000 М			
PCB congener 138	<0.00	, 3 TM168			<0.003			
T OB congenier 100	ma/ka	1			40.000 M			
PCB congener 153	<0.00	, 3 TM168			<0.003			
	ma/ka	1			M			
PCB congener 180	<0.00	3 TM168			< 0.003			
	mg/ka	1			M			
Sum of detected PCB 7	< 0.02	1 TM168			<0.021			
Congeners	mg/kg	,						
ANC @ pH 4	< 0.03	3 TM182			0.269			
	mol/kc	3						
ANC @ pH 6	< 0.03	3 TM182			0.129			
	mol/kg	3						
Polyaromatic	<10	TM213			<10			
hydrocarbons, Total 17	mg/kg	1						

_

#### **CERTIFICATE OF ANALYSIS**

SDG:	160608-88	Location:	Valleyfields	Order Number:	405/8478
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	366319
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:	

Results Legend		Customer Sample R	VF5	VF6	VF7	VF8	VF9	VF10
# ISO17025 accredited. M mCERTS accredited.								
aq Aqueous / settled sample.		Depth (m)						
tot.unfilt Total / unfiltered sample.		Sample Type	Saline Water (Sal W)					
* Subcontracted test. ** % recovery of the surrogate standa	rd to	Date Sampled Sample Time	06/06/2016	06/06/2016	06/06/2016	07/06/2016	06/06/2016	07/06/2016
check the efficiency of the method.	The	Date Received	08/06/2016	08/06/2016	08/06/2016	08/06/2016	08/06/2016	08/06/2016
samples aren't corrected for the rec	covery	SDG Ref	160608-88 13558080	160608-88 13558081	160608-88 13558083	160608-88 13558091	160608-88 13558084	160608-88 13558092
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	1000000	1000001	1000000	10000001	10000004	10000052
Component	LOD/Un	its Method						
Conductivity @ 20 deg.C	<0.00	5 TM120	20.1	15.4	14.4	25.8	23.1	15.6
	mS/cn	n	#	#	#	#	#	#
Antimony (diss.filt)	<0.000	16 TM152	<0.00016	0.000213	<0.00016	<0.00016	<0.0016	0.00019
	mg/i		0.0470	0.0400	0.0000	0.0404	0.0505	0.000
Arsenic (diss.filt)	<0.000	12 IM152	0.0178	0.0428	0.0203	0.0104	0.0505	0.022
Deren (dies filt)	-0.000	A TM152	# 1.70	#	#	#	#	#
Boron (diss.nit)	<0.00s	94 1101152	1.79	5.07 #	0.323	3.02 #	1.23	10.1
Cadmium (diss filt)		1 TM152	# 0.00121	0.00302	0.0013	# 0.001/11	0.00493	0.0017
	-0.000 ma/l	1 111132	0.00121 #	0.00002	0.0013	0.00141 #	0.00433	0.0017 #
Chromium (diss filt)	<0.000	22 TM152	0 00193	0.0011	0 00144	0 00347	0 00674	0 00337
	ma/l		#	#	#	#	#	#
Manganese (diss.filt)	<0.000	04 TM152	0.0368	0.0425	0.305	0.0745	0.642	0.247
	mg/l		#	#	#			
Molybdenum (diss.filt)	< 0.000	24 TM152	0.00202	0.466	0.0108	0.295	0.0444	0.264
	mg/l		#	#	#	#	#	#
Selenium (diss.filt)	< 0.000	39 TM152	0.0617	0.0677	0.0673	0.037	0.157	0.0705
	mg/l		#	#	#	#	#	#
Vanadium (diss.filt)	<0.000	24 TM152	0.0031	0.0254	<0.00024	0.000498	<0.0024	<0.00024
	mg/l		#	#	#	#	#	#
Sulphate	<2 mg	g/l TM184	352	770	494	1550	771	569
			#	#	#	#	#	#
Chloride	<2 mg	g/l TM184	10300	7160	9430	12300	11900	6340
			#	#	#	#	#	#
Sodium (diss.filt)	<0.07	6 TM228	4990	3310	3580	5540	5030	3670
	mg/l		#	#	#	#	#	#
Magnesium (diss.filt)	<0.03	6 TM228	453	40.9	497	583	578	236
	mg/l		#	#	#	#	#	#
рН	<1 p⊦	H TM256	7.51	8.02	7.19	7.78	7.32	7.76
	Units		#	#	#	#	#	#

(

#### **CERTIFICATE OF ANALYSIS**

Results Legend # ISO17025 accredited.		Customer Sample R	VF11	VF12	VF3D		
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	Saline Water (Sal W)	Saline Water (Sal W)	Saline Water (Sal W)		
* Subcontracted test. ** % recovery of the surrogate standa	ard to	Date Sampled Sample Time	07/06/2016	07/06/2016	07/06/2016		
check the efficiency of the method results of individual compounds w	. The rithin	Date Received	08/06/2016	08/06/2016	08/06/2016		
samples aren't corrected for the re (F) Trigger breach confirmed	covery	SDG Ref Lab Sample No.(s)	13558093	13558094	13558088		
1-5&+§@ Sample deviation (see appendix)		AGS Reference					
Conductivity @ 20 deg.C	<0.00 mS/c	05 TM120 m	1.89 #	1.17 #	3.66 #		
Antimony (diss.filt)	<0.000 mg/	016 TM152 I	<0.00016	<0.00016	<0.00016		
Arsenic (diss.filt)	<0.000 mg/	012 TM152 I	0.00276 #	0.002 #	0.00964 #		
Boron (diss.filt)	<0.00 mg/	94 TM152 I	0.301 #	0.345 #	0.472 #		
Cadmium (diss.filt)	<0.00 mg/	01 TM152	0.000124 #	0.000174 #	0.000561 #		
Chromium (diss.filt)	<0.000 mg/	022 TM152 I	0.00131 #	0.000301 #	0.00119 #		
Manganese (diss.filt)	<0.000 mg/	004 TM152 I	0.0636	0.0548 #	0.124		
Molybdenum (diss.filt)	<0.000 mg/	024 TM152 I	<0.00024 #	<0.00024 #	0.00048 #		
Selenium (diss.filt)	<0.000 mg/	039 TM152 I	0.00909 #	0.00595 #	0.0306 #		
Vanadium (diss.filt)	<0.000 mg/	024 TM152 I	0.000492 #	<0.00024 #	0.000871 #		
Sulphate	<2 m	ng/l TM184	<2 #	<2 #	<2 #		
Chloride	<2 m	ng/l TM184	395 #	251 #	1330 #		
Sodium (diss.filt)	<0.0 mg/	76 TM228 I	263 #	143 #	516 #		
Magnesium (diss.filt)	<0.03 mg/	36 TM228 I	26.8 #	19.6 #	61.8 #		
рН	<1 p Unit	H TM256 s	7.79 #	7.83 #	7.86		

**ALcontrol Laboratories** Validated **CERTIFICATE OF ANALYSIS** 160608-88 Location: Valleyfields 405/8478 SDG: Order Number: Job: H_SLR_EDH-58 Customer: SLR Consulting Ltd Report Number: 366319 405.00481.00033 Attention: Zak Ritchie Superseded Report: **Client Reference:** GRO by GC-FID (S) Customer Sample R PFA Results Le ISO17025 accredited mCERTS accredited. # M Aqueous / settled sample. Dissolved / filtered sample aq Depth (m) diss.filt diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery (F) Trigger breach confirmed 1-5&F& Smple deviation (see appendix) Soil/Solid Sample Type Date Sampled 06/06/2016 Sample Time Date Received 08/06/2016 160608-88 SDG Ref 13558271 Lab Sample No.(s) AGS Reference Component LOD/Units Method Methyl tertiary butyl ether < 0.005 TM089 < 0.005 (MTBE) mg/kg # Benzene <0.01 TM089 <0.01 Μ mg/kg Toluene < 0.002 TM089 <0.002 mg/kg Μ Ethylbenzene < 0.003 TM089 < 0.003 mg/kg Μ < 0.006 TM089 <0.006 m,p-Xylene mg/kg Μ TM089 < 0.003 o-Xylene < 0.003 mg/kg Μ TM089 sum of detected mpo < 0.009 <0.009 xylene by GC mg/kg sum of detected BTEX by < 0.024 TM089 < 0.024 GC mg/kg

			GERI	IFICATE OF A	ANALY 515			
SDG: Job: Client Reference:	160608-88 H_SLR_EDH- 405.00481.000	58 )33	Location: V Customer: S Attention: Z	alleyfields LR Consulting Ltd ak Ritchie		Order Number: Report Number Superseded Re	405/8478 : 366319 port:	
AH Spec MS - Aqu	eous (W)							
Results Legend # ISO17025 accredited. M mCERTS accredited.		Customer Sample R	ES1	ES2	TD	VF1	VF4	VF5
aq Aqueous / settled sample. liss.filt Dissolved / filtered sample. totunfilt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surroga	e standard to	Depth (m) Sample Type Date Sampled Sample Time	Saline Water (Sal W) 06/06/2016	Saline Water (Sal W) 06/06/2016	Saline Water (Sal W) 06/06/2016	Saline Water (Sal W) 06/06/2016	Saline Water (Sal W) 07/06/2016	Saline Water (Sal W) 06/06/2016
check the efficiency of the results of individual comp samples aren't corrected f (F) Trigger breach confirmed	method. The ounds within or the recovery	Date Received SDG Ref Lab Sample No.(s)	08/06/2016 160608-88 13558086	08/06/2016 160608-88 13558087	08/06/2016 160608-88 13558085	08/06/2016 160608-88 13558079	08/06/2016 160608-88 13558090	08/06/2016 160608-88 13558080
omponent	LOD/U	nits Method						
laphthalene (aq)	<0.00 mg/	01 TM178	<0.0001	<0.0001	<0.0001 #	<0.0001 #	<0.0001 #	<0.0001
cenaphthene (aq)	<0.0000	TM178 015	<0.000015 #	<0.000015	<0.000015 #	<0.000015 #	<0.000015 #	<0.000015
cenaphthylene (aq)	<0.000	TM178 011	<0.000011 #	<0.000011 #	<0.000011 #	<0.000011 #	<0.000011 #	<0.000011
luoranthene (aq)	<0.0000	TM178	<0.000017 #	<0.000017	<0.000017 #	<0.000017 #	<0.000017 #	0.000022
Anthracene (aq)	<0.0000	TM178 015	<0.000015 #	<0.000015	<0.000015 #	<0.000015 #	<0.000015 #	<0.000015
Phenanthrene (aq)	<0.000	TM178	<0.000022 #	<0.000022	<0.000022 #	<0.000022 #	<0.000022 #	<0.000022
Fluorene (aq)	<0.000	TM178		<0.000014				<0.000014
Chrysene (aq)	<0.000	TM178	**************************************	<0.000013 #	* <0.000013 #	* <0.000013 #	* <0.000013 #	0.000013
Pyrene (aq)		TM178	# <0.000015 #	<0.000015 #	# <0.000015 #	// ***********************************	// ***********************************	0.000023
Benzo(a)anthracene (aq	)	TM178	# <0.000017	<0.000017	# <0.000017	# <0.000017	# <0.000017	0.000017
enzo(b)fluoranthene (a	q)	TM178	# <0.000023	<pre>#</pre>	# <0.000023	# <0.000023	# <0.000023	<0.000023
Benzo(k)fluoranthene (a	q) <0.000(	TM178	# <0.000027 #	<0.000027 #	// ***********************************	// ***********************************	// ***********************************	<0.000027
Benzo(a)pyrene (aq)	<0.000	TM178	**************************************	<0.00009 #	* <0.00009 #	** <0.000009 #	* <0.00009 #	0.000014
Dibenzo(a,h)anthracene	<0.000	TM178		<0.000016				<0.000016
Benzo(g,h,i)perylene (aq	) <0 000	TM178	<0.000016 #	<0.000016	<0.000016 #	<0.000016 #	<0.000016 #	<0.000016
ndeno(1,2,3-cd)pyrene aq)	<0.0000	TM178	<0.000014 #	<0.000014 #	<0.000014 #	<0.000014 #	<0.000014 #	<0.000014
PAH, Total Detected	<0.000	TM178	<0.000344	<0.000344	<0.000344	<0.000344	<0.000344	<0.000344
				1				

	Joratories	5	CERT	IFICATE OF A	ANALYSIS			validated
SDG:1Job:HClient Reference:4	60608-88 I_SLR_EDH- 05.00481.00	58 033	Location: Va Customer: SI Attention: Za	alleyfields LR Consulting Ltd ak Ritchie		Order Number: Report Number Superseded Re	405/8478 : 366319 port:	
AH Spec MS - Aque	ous (W)							
Results Legend # ISO17025 accredited.		Customer Sample R	VF6	VF7	VF8	VF9	VF10	VF11
m ///CERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. Subcontracted test. * % recovery of the surrogate	standard to	Depth (m) Sample Type Date Sampled Sample Time	Saline Water (Sal W) 06/06/2016	Saline Water (Sal W) 06/06/2016	Saline Water (Sal W) 07/06/2016	Saline Water (Sal W) 06/06/2016	Saline Water (Sal W) 07/06/2016	Saline Water (Sal W 07/06/2016
check the efficiency of the m results of individual compou samples aren't corrected for (F) Trigger breach confirmed -5&+§@ Sample deviation (see apper	nethod. The unds within the recovery ndix)	Date Received SDG Ref Lab Sample No.(s) AGS Reference	08/06/2016 160608-88 13558081	08/06/2016 160608-88 13558083	08/06/2016 160608-88 13558091	08/06/2016 160608-88 13558084	08/06/2016 160608-88 13558092	08/06/2016 160608-88 13558093
Naphthalene (aq)	<0.00	001 TM178	<0.0001	<0.0001	<0.0001 #	<0.0001	<0.0001	<0.0001
Acenaphthene (aq)	<0.000	TM178	<0.000015	<0.000015	<0.000015	<0.000015	<0.000015 #	<0.000015
Acenaphthylene (aq)	<0.000	TM178	<0.000011 #	<0.000011 #	<0.000011 #	<0.000011	<0.000011 #	<0.000011
Fluoranthene (aq)	<0.000	TM178	<0.000017 #	<0.000017 #	<0.000017 #	<0.000017 #	<0.000017 #	<0.000017
Anthracene (aq)	<0.000	TM178		<0.000015 #				<0.000015
Phenanthrene (aq)	<0.000	TM178	<0.000022 #	<0.000022 #	<0.000022 #		* <0.000022 #	<0.000022
Fluorene (aq)	<0 000	TM178						<0.000014
Chrysene (aq)	<0 000	TM178	<0.000013 #	<0.000013 #	<0.000013 #			<0.000013
^o yrene (aq)	<0.000	TM178	<0.000015 #	<0.000015 #	<0.000015 #	<0.000015 #	0.000015 #	<0.000015
Benzo(a)anthracene (aq)	<0.000	TM178	<0.000017 #	<0.000017 #	<0.000017 #	<0.000017 #	<0.000017 #	<0.000017
Benzo(b)fluoranthene (aq	) <0.000	TM178	<0.000023 #	<0.000023 #	<0.000023 #	<0.000023 #	<0.000023 #	<0.000023
Benzo(k)fluoranthene (aq	) <0.000	TM178	<0.000027 #	<0.000027 #	<0.000027 #	<0.000027 #	<0.000027 #	<0.000027
Benzo(a)pyrene (aq)	<0.000	TM178	<0.00009	<0.00009	<0.000009	<0.00009	<0.00009	<0.00009
Dibenzo(a,h)anthracene aq)	<0.000	TM178 016	<0.000016 #	<0.000016 #	<0.000016 #	<0.000016 #	<0.000016 #	<0.000016
Benzo(g,h,i)perylene (aq)	<0.000	TM178 016	<0.000016 #	<0.000016 #	<0.000016 #	<0.000016	<0.000016 #	<0.000016
ndeno(1,2,3-cd)pyrene aq)	<0.000	TM178	<0.000014 #	<0.000014 #	<0.000014 #	<0.000014 #	<0.000014 #	<0.000014
PAH, Total Detected USEPA 16 (aq)	<0.000	TM178	<0.000344	<0.000344	<0.000344	<0.000344	<0.000344	<0.000344

#### **CERTIFICATE OF ANALYSIS**

SDG:     1606       Job:     H_SI	08-88 _R_EDH-	58	Location: Va Customer: SI	alleyfields _R Consulting Ltd	Order Number: Report Number:	405/8478 366319	
Client Reference: 405.0	0481.00	033	Attention: Za	ak Ritchie	 Superseded Rep	oort:	
PAH Spec MS - Aqueou	s (W)	Customor Sample P	1/510	VE2D	 		
# ISO17025 accredited.		Customer Sample R	VF12	VF3D			
aq Aqueous / settled sample.		Depth (m)					
tot.unfilt Total / unfiltered sample.		Sample Type	Saline Water (Sal W)	Saline Water (Sal W)			
** % recovery of the surrogate stand	ard to	Sample Time					
check the efficiency of the method results of individual compounds v	l. The vithin	Date Received	08/06/2016	08/06/2016			
samples aren't corrected for the re (F) Trigger breach confirmed	covery	Lab Sample No.(s)	13558094	13558088			
1-5&+§@ Sample deviation (see appendix)		AGS Reference	•				
Naphthalene (aq)	< 0.00	01 TM178	<0.0001	<0.0001			
	mg/	1	#	#			
Acenaphthene (aq)	<0.000	TM178 015	<0.000015 #	<0.000015 #			
Acenaphthylene (aq)		TM178	<0.000011	<0.000011			
Elucrophone (cg)	<0.000	011	#	#	 		
Fluorantinene (aq)	<0.000	017	<0.000017	<0.000017 #			
Anthracene (aq)	<0.000	TM178	<0.000015	<0.000015			
Phenanthrene (ag)	-0.000	TM178	<0.000022	0 000046			
	<0.000	022	#	#			
Fluorene (aq)	<0.000	TM178 014	<0.000014 #	0.000017			
Chrysene (aq)		TM178	<0.000013	<0.000013			
Pyrene (ag)	<0.000	013 TM178	# 0.000025	# 0.000019			
5 ( 0	<0.000	015	#	#			
Benzo(a)anthracene (aq)	<0.000	TM178	<0.000017	<0.000017			
Benzo(b)fluoranthene (aq)	< 0.000	TM178	<0.000023	<0.000023 #			
Benzo(k)fluoranthene (aq)	<0.000	TM178 027	<0.000027 #	<0.000027 #			
Benzo(a)pyrene (aq)		TM178	<0.00009	<0.00009			
	<0.000	009	#	#			
(aq)	<0.000	016	<0.000016	<0.000016			
Benzo(g,h,i)perylene (aq)	<0.000	TM178 016	<0.000016 #	<0.000016 #			
Indeno(1,2,3-cd)pyrene (aq)	<0.000	TM178 014	<0.000014 #	<0.000014 #			
PAH, Total Detected	<0.000	TM178	<0.000344	<0.000344			
		-					

#### **CERTIFICATE OF ANALYSIS**

Validated

						1313			
SDG:     160       Job:     H_       Client Reference:     405	)608-88 SLR_EDH-58 5.00481.00033	Lo Ci At	ocation: ustomer: tention:	Valleyfie SLR Cor Zak Ritc	lds nsulting Ltd hie	O Ri Si	rder Number: eport Number: uperseded Report:	405/8478 366319	
		CEN	10:1 \$	SINGLE	STAGE LEAC	CHATE TES	Г		
WAC ANALYTICAL		6						REF : BS	EN 12457
Client Reference					Site Location		Vallev	fields	
Mass Sample taken (k	a)	0 129			Natural Moistur	e Content (%)	43.6		
Mass of dry sample (k	9) (9)	0.125			Dry Matter Cont	$e$ content ( $\frac{1}{2}$ )	40.0		
Particle Size <4mm	9)	>95%			Dry Matter Com	ent (%)	09.7		
Case							Landf	ill Waste Acce	otance
SDG		160608-88						Criteria Limits	
Lab Sample Number(s	i)	13558271						1	
Sampled Date		06-Jun-2016						Stable	
Customer Sample Ref		PFA					Inert Waste	Non-reactive Hazardous Waste	Hazardous
Depth (m)	-						Landfill	in Non- Hazardous	Waste Landfil
Solid Waste Analysis		Result						Landfill	
		6.76					3	5	6
Loss on Ignition (%)		17.6					-	-	10
Sum of BTEX (mg/kg)		<0.024					6	-	-
Sum of 7 PCBs (mg/kg)		<0.021					1	-	-
Mineral Oil (mg/kg)		17.4					500	-	-
PAH Sum of 17 (mg/kg)		<10					100	-	-
PH (pH Units) ANC to pH 6 (mol/kg)		9.16					-	-	-
ANC to pH 4 (mol/kg)		0.269					-	-	-
	l I								
Eluate Analysis		C2 Conc ⁿ in	10:1 eluat	e (mg/l)	A2 10:1 conc	ⁿ leached (mg/kg)	Limit valu using B	es for compliance lea IS EN 12457-3 at L/S	ching test 10 l/kg
America		Result	Limit	of Detection	Result	Limit of Detectio	n or	0	05
Arsenic		0.042	<0	.00012	0.42	<0.0012	0.5	2	25
Barium		0.332	<0	.00003	3.32	< 0.0003	20	100	300
Cadmium		0.00531	<(	00000	0.0531	<0.001	0.04	10	0 70
Chromium		0.0548	<0	.00022	0.0444	<0.0022	0.5	10	100
Copper		0.00141	<0	.00085	0.0141	<0.0085	2	50	100
Melukalaruwa		<0.00001	<0	.00001	<0.0001	<0.0001	0.01	0.2	2
Niekol		0.0104	<0	.00024	3.10	<0.0024	0.5	10	30
		0.00494	<0	.00015	0.0494	<0.0015	0.4	10	40
Lead		0.000737	<0	.00002	0.00737	<0.0002	0.5	10	50
Solonium		0.0202	<0	.00016	0.202	<0.0010	0.06	0.7	5 7
Zino		0.230	<0	.00039	2.30	<0.0039	0.1	<u> </u>	200
Chlorido		0.00207	<0	<100	0.0207	<0.0041	4	15000	200
Eluorido		2910		< 100	29100	<1000	10	15000	2000
Sulphate (soluble)		624		<10	5240	<100	1000	20000	5000
Total Dissolved Solids		7420		< 25	74200	<100	1000	60000	10000
Total Monohydric Phenols (M	0	<0.016		~23	<0.16	<2.50	4000	00000	100000
Dissolved Organic Carbon	,,	<0.010		~2	<0.10	<0.10	F00		-
Leach Test Informatio	n								
Date Prepared		09-Jun-2016							
pH (pH Units)		9.23							
Conductivity (µS/cm)		8,780.00							
Volume Leachant (Litron)		21.00							
Comme Leachant (LILES)		0.861							

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

Mcerts Certification does not apply to leachates

24/06/2016 13:42:41

#### **CERTIFICATE OF ANALYSIS**

Validated

## Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample_1	Surrogate Corrected
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step		
TM018	BS 1377: Part 3 1990	Determination of Loss on Ignition		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water		
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser		
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter		
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water		
TM132	In - house Method	ELTRA CS800 Operators Guide		
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils		
TM178	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS in Waters		
TM182	CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM213	In-house Method	Rapid Determination of PAHs by GC-FID		
TM228	US EPA Method 6010B	Determination of Major Cations in Water by iCap 6500 Duo ICP-OES		
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter		
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

#### **CERTIFICATE OF ANALYSIS**

Validated

SDG:	160608-88	Location:	Valleyfields	Order Number:	405/8478
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	366319
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:	

# **Test Completion Dates**

Lab Sample No(s)	13558086	13558087	13558271	13558085	13558079	13558090	13558080	13558081	13558083	13558091
Customer Sample Ref.	ES1	ES2	PFA	TD	VF1	VF4	VF5	VF6	VF7	VF8
AGS Ref.										
Depth										
Type	SALINE D	SALINE D	SOLID	SALINE C	SALINE C	SALINE C	SALINE C	SALINE C	SALINE C	SALINE C
	OALINE_D	OALINE_D		OALINE_O	OALINE_O	OALINE_O	OALINE_C	OALINE_O	OALINE_O	OALINE_O
ANC at pH4 and ANC at pH 6	16 km 2016	12 Jun 2016	10-Jun-2016	12 km 2016	10 Jun 2016	12 Jun 2016	12 Jun 2016	12 km 2016	12 Jun 2016	16 Jun 2016
CEN 10:1 Leachate (1 Stage)	10-Jun-2010	13-Juli-2016	13-Jun-2016	13-Juli-2016	10-Jun-2016	13-Juli-2016	13-Juli-2016	13-Jun-2016	13-Juli-2016	10-Jun-2016
CEN Peadings			10 Jun 2016							
Conductivity (at 20 deg C)	13- Jun-2016	13- lun-2016	10-3011-2010	13- lun-2016	13- lun-2016	13- lun-2016	13- Jun-2016	13- lun-2016	13- lun-2016	13- lun-2016
Dissolved Metals by ICP-MS	20- Jun-2016	20- Jun-2016	13- lun-2016	20- Jun-2016	20- Jun-2016	24- Jun-2016	20- Jun-2016	20- Jun-2016	20- Jun-2016	24- lun-2016
Dissolved Metals by ICI - MS	20-301-2010	20-3011-2010	13 Jun 2016	20-301-2010	20-301-2010	24-3011-2010	20-3011-2010	20-301-2010	20-301-2010	24-3011-2010
Eluoride			13-Jun-2016							
			16 Jun 2016							
Loss on Ignition in soils			13- Jun-2016							
			13-Jun-2016							
Metals by iCap_OES Dissolved (W/)	15-Jun-2016	15-Jun-2016	10 0011 2010	15-Jun-2016	15-Jun-2016	16-Jun-2016	15-Jun-2016	15-Jun-2016	15-Jun-2016	16-Jun-2016
Mineral Oil	10 0011 2010	10 0011 2010	15-Jun-2016	10 0011 2010	10 0011 2010	10 0011 2010	10 0011 2010		10 0011 2010	10 0011 2010
PAH Spec MS - Aqueous (W)	16-Jun-2016	16-Jun-2016		16-Jun-2016	16-Jun-2016	16-Jun-2016	16-Jun-2016	16-Jun-2016	16-Jun-2016	16-Jun-2016
PAH Value of soil			10-Jun-2016							
PCBs by GCMS			13-Jun-2016							
рН			10-Jun-2016							
pH Value	13-Jun-2016	14-Jun-2016		10-Jun-2016	14-Jun-2016	13-Jun-2016	15-Jun-2016	10-Jun-2016	14-Jun-2016	13-Jun-2016
Phenols by HPLC (W)			14-Jun-2016							
Sample description			09-Jun-2016							
Total Dissolved Solids			13-Jun-2016							
Total Organic Carbon			14-Jun-2016							
	12559094	12559002	12559002	12559004	12550000	1	1			
Lab Sample No(S)	13556064	13336092	13556095	13556094	13556066					
Customer Sample Ref.	VF9	VF10	VE11	VF12	VF3D					
AGS Ref.										
Depth										
Type	SALINE D	SALINE B	SALINE A	SALINE A	SALINE A					
Anions by Kone (w)	13- lup 2016	13- lun 2016	13- lup 2016	13- lup 2016	13- lup 2016					
Conductivity (at 20 deg C)	13- Jun-2016	13- Jun-2016	13- Jun-2016	13- Jun-2016	13- Jun-2016					
Dissolved Metals by ICP-MS	24-Jun-2016	24-Jun-2016	24-Jun-2016	20-Jun-2016	24-Jun-2016					
Metals by iCan-OES Discolved (W)	16-Jun-2016	16-Jun-2016	13-Jun-2016	13-Jun-2016	16-Jun-2016					
PAH Spec MS - Aqueous (W)	16-Jun-2016	16-Jun-2016	16-Jun-2016	16-Jun-2016	16-Jun-2016					
nH Value	14-Jun-2016	13-Jun-2016	13-Jun-2016	14-Jun-2016	10-Jun-2016					
	1-1-0011-2010	10-001-2010	10-0011-2010	1-1-0011-2010	10-001-2010	l .				

#### **CERTIFICATE OF ANALYSIS**

SDG:	160608-88	Location:	Valleyfields	Order Number:	405/8478
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	366319
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:	

### Appendix

**ALcontrol Laboratories** 

#### General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP - No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately

11. Results relate only to the items tested.

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment . Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect

14. Product analyses - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, and Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol)

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17 Stones/debris are not routinely removed. We always endeavour to take а representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis

21. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

### Sample Deviations

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

#### Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised liaht microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	WhiteAsbestos
Amoste	BrownAsbestos
Crodobite	Blue Asbestos
Fibrous Adindite	-
Florous Anthophylite	-
Fibrous Trendile	-

#### Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.



SLR Consulting Ltd Floor 2 4/5 Lochside View Edinburgh Park Edinburgh Lanarkshire EH12 9DH

Attention: Zak Ritchie

## **CERTIFICATE OF ANALYSIS**

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 05 July 2016 H_SLR_EDH 160703-14 405.00481.00033 Valleyfields 367642

We received 2 samples on Friday July 01, 2016 and 2 of these samples were scheduled for analysis which was completed on Tuesday July 05, 2016. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan Operations Manager



Alcontrol Laboratories is a trading division of ALcontrol UK Limited Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No.

ALcontrol	Laboratories	055		0.0	Validated
		LER	TIFICATE OF ANALY	515	
SDG:	160703-14	Location:	Valleyfields	Order Number:	405/8514
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	367642
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:	
		Pagai	ad Sample Ove	rviow	
		Recen	veu Sample Ove	i view	
Lab Sample No(	s) Custe	omer Sample Ref.	AGS	Ref. Depth (r	n) Sampled Date
13699804		VF10			29/06/2016

29/06/2016

Only received samples which have had analysis scheduled will be shown on the following pages.

VF3D

13699803

ALcontrol L	aborator	ies	CI	ER'	TIFICATE OF ANALYSIS			Validated
SDG: Job: Client Reference:	160703-14 H_SLR_ED 405.00481.	DH-58 .00033	Location: Customer Attention	r: :	Valleyfields SLR Consulting Ltd Zak Ritchie	Order Number: Report Number: Superseded Report:	405/8514 367642	
LIQUID Results Legend		Lab Sample N	No(s)	13699803 13699804				
No Determina Possible	ation	Custome Sample Refer	r œnce	VF3D VF10				
		AGS Refere	nce					
		Depth (m	)					
	-	Containe	r	HNO3 Filtered (ALE HNO3 Filtered (ALE				
Dissolved Metals by ICP-M	WS	All	NDPs: 0 Tests: 2	<mark>x</mark> x				

ALcontrol	Laboratories
-----------	--------------

(

#### **CERTIFICATE OF ANALYSIS**

SDG:	16070	3-14 D EDU 59		Location:	Valleyfields	Order Number:	405/8514	
Client Referenc	e: 405.00	0481.00033		Attention:	Zak Ritchie	Superseded Re	port:	
Resul # ISO17025 accre M mCERT5 accre aq Aqueous / settle diss.filt Dissolved / file tot.unfilt Total / unfiltere * Subcontracted i * % recovery of ti check the effici results of indivi samples arent t (F) Trigger breach	Its Legend dited. dited. ed sample. red sample. test. he surrogate standar ency of the method. idual compounds wit corrected for the rec confirmed	rd to The thin overy	bepth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref ab Sample No.(s)	VF10 Water(GW/SW) 29/06/2016 01/07/2016 160703-14 13699804	VF3D Water(GW/SW) 29/06/2016 01/07/2016 160703-14 13699803			
1-5&+§@ Sample deviation	on (see appendix)	L OD/Units	AGS Reference					
Cadmium (diss.fil	t)	< 0.0001	TM152	0.00217	0.000409			
		mg/l			# #			
			+					

ALcontrol L	_aboratories					Validated
		CEF	RTIFICATE OF ANALYS	SIS		
SDG:	160703-14	Location:	Valleyfields	Order Number:	405/8514	
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	367642	
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:		

# Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
¹ Applies to Solid sample	es only. DRY indicates samples have been dried at	35°C. NA = not applicable.		

ALcontrol I	Laboratories		CEI	RTIFICATE OF ANALYSIS			Validated
SDG: Job:	160703-14 H_SLR_EDH-58		Location: Customer:	Valleyfields SLR Consulting Ltd	Order Number: Report Number:	405/8514 367642	
Client Reference:	405.00481.00033		Attention:	t Completion Dates	Superseded Report:		
L	ab Sample No(s)	13699804	13699803	t oompletion bates			
Custo	omer Sample Ref.	VF10	VF3D				
	AGS Ref.						
	Depth Type						
issolved Metals by ICP-	MS	05-Jul-2016	05-Jul-2016				

#### **CERTIFICATE OF ANALYSIS**

SDG:	160703-14	Location:	Valleyfields	Order Number:	405/8514
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	367642
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:	

## Appendix

**ALcontrol Laboratories** 

### General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP - No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately

11. Results relate only to the items tested.

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment . Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect

14. Product analyses - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, and Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol)

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17 Stones/debris are not routinely removed. We always endeavour to take а representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis

21. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

### Sample Deviations

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
0	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

#### Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised liaht microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name	
Chrysofile	WhiteAsbestos	
Amosite	BrownAsbestos	
Crodobite	Blue Asbestos	
Fibraus Adinate	-	
Florous Anthophylite	-	
Fibrous Trendile	-	

#### Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.



SLR Consulting Ltd Floor 2 4/5 Lochside View Edinburgh Park Edinburgh Lanarkshire EH12 9DH

Attention: Zak Ritchie

### **CERTIFICATE OF ANALYSIS**

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 16 September 2016 H_SLR_EDH 160911-7 405.00481.00033 Valleyfields 378274

We received 15 samples on Friday September 09, 2016 and 15 of these samples were scheduled for analysis which was completed on Friday September 16, 2016. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALcontrol Laboratories Hawarden (Method codes TM) or ALcontrol Laboratories Aberdeen (Method codes S).

Approved By:

Sonia McWhan Operations Manager



#### **CERTIFICATE OF ANALYSIS**

Validated

-					
SDG:	160911-7	Location:	Valleyfields	Order Number:	405/8599
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	378274
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:	

# **Received Sample Overview**

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
14132054	ES1			06/09/2016
14132053	ES2			06/09/2016
14132060	PFA			06/09/2016
14132055	TD			07/09/2016
14132052	VF1			07/09/2016
14132051	VF4			07/09/2016
14132049	VF5			07/09/2016
14132050	VF6			07/09/2016
14132048	VF7			07/09/2016
14132056	VF8			07/09/2016
14132059	VF9			06/09/2016
14132047	VF10			06/09/2016
14132057	VF11			06/09/2016
14132058	VF12			07/09/2016
14132046	VF3D			06/09/2016

Only received samples which have had analysis scheduled will be shown on the following pages.
ALcontrol L	aboratorie.	S	С	EF	۲۶	ΊF	IC	; <b>A</b> ]	ГE	0	F	AI	٩V	۱Ľ	YS	SIS	;												
SDG: Job: Client Reference:	160911-7 H_SLR_EDH-58 405.00481.0003	3	Location Custome Attention	: r: ::	V S Z	alley LR ( ak R	/fiel Con titch	ds sulti nie	ng L	td										Or Re Su	de po pe	r N rt I rse	um Nur ede	nbe mb d F	r: er: Rep	oor	t:	4 3	05/8599 78274
LIQUID Results Legend		Lab Sample I	No(s)			14132055			14132052			14132051			14132049			14132050				14132048			14132056			14132059	
N No Determina Possible	ntion	Custome Sample Refer	r ence			TD			VF1			VF4			VF5			VF6				VE7			VF8			VF9	
		AGS Refere	nce																										
		Depth (m	)																										
		Containe	r	0.5l glass bottle (ALE227	500ml Plastic (ALE208)	HNO3 Filtered (ALE204)	0.5l glass bottle (ALE227	500ml Plastic (ALE208)	HNO3 Filtered (ALE204)	0.5l glass bottle (ALE227	500ml Plastic (ALE208)	HNO3 Filtered (ALE204)	0.5l glass bottle (ALE227	500ml Plastic (ALE208)	HNO3 Filtered (ALE204)	0.5l glass bottle (ALE227	500ml Plastic (ALE208)	HNU3 Hiltered (ALE204)	0.5l glass bottle (ALE227	500ml Plastic (ALE208)	Dissolved Metals Preser	U.3I glass butle (ALE227 HNO3 Filtered (ALE204)	o El Alassa hattic (ALEZUO)	Dissolved Metals Preser	HNO3 Filtered (ALE204)	0.5l glass bottle (ALE227	500ml Plastic (Al E208)	HNO3 Filtered (ALE204)	
Anions by Kone (w)	All		NDPs: 0 Tests: 12		x			x			x			x			x			x			>	2			x		
Conductivity (at 20 deg.C)	All		NDPs: 0 Tests: 12	-	x			x			x			x			x			x			>				x		
Dissolved Metals by ICP-MS	All		NDPs: 0 Tests: 12	-		x	2		×	i i i		x			x			×	C 100 Control of the second			x			x			x	
Fluoride	All		NDPs: 0 Tests: 12		x			x			x			x			x			x			>	C			x		
Mercury Dissolved	All		NDPs: 0 Tests: 12			<mark>x</mark>			×		2	x		2	<mark>&lt;</mark>		2	K			x			x			×	2	
Metals by iCap-OES Dissolved (	N) All		NDPs: 0 Tests: 12			x	2		x	ſ		x			x			×	<u>(</u>			x			x			x	
PAH Spec MS - Aqueous (W)	All		NDPs: 0 Tests: 12	x			x			x			x			x			x			)	K			x			
pH Value	All		NDPs: 0 Tests: 12		x			x			x			x			x			x			>	2			x		

ALcontrol L	Laboratori	es	C	FP	TIF		۸т	F (	٦E	۸۸	10	1 7 9		Validated
SDG: Job: Client Reference:	160911-7 H_SLR_EDH- 405.00481.00	58 033	Location: Custome Attention	r:	Valle SLR Zak	eyfield Cons Ritchi	ds sulting ie	y Ltd					Order Number: 405/8599 Report Number: 378274 Superseded Report:	
LIQUID Results Legend X Test		Lab Sample	e No(s)			14132047		14132057		14132058		14132046		
No Determin Possible	ation	Custom Sample Ref	er erence		:	VF10		VF11		VF12		VF3D		
		AGS Refe	ence											
		Depth (	m)											
		Contair	ier	0.5l glass bottle (ALE208)	Dissolved Metals Preser	0.5l glass bottle (ALE227 HNO3 Filtered (ALE204)	Dissolved Metals Preser 500ml Plastic (ALE208)	0.5l glass bottle (ALE227 HNO3 Filtered (ALE204)	500ml Plastic (ALE208)	HNO3 Filtered (ALE204)	0.5I glass bottle (ALE227	HNO3 Filtered (ALE204) Dissolved Metals Preser		
Anions by Kone (w)		All	NDPs: 0 Tests: 12	<b>,</b>	4		x		x		)	K		
Conductivity (at 20 deg.C)		All	NDPs: 0 Tests: 12	<b>,</b>	(		x		x		)	K		
Dissolved Metals by ICP-MS		All	NDPs: 0 Tests: 12			<mark>x</mark>		x		x		x		
Fluoride		All	NDPs: 0 Tests: 12	<b>)</b>	<u>د</u>		x		x		)	K		
Mercury Dissolved		All	NDPs: 0 Tests: 12		x		×		) 	<mark>(</mark>		x		
Metals by iCap-OES Dissolved (	(W)	All	NDPs: 0 Tests: 12			x		x		x		X		
PAH Spec MS - Aqueous (W)		All	NDPs: 0 Tests: 12	x		x		x			x			
JH Value		All	NDPs: 0 Tests: 12	)	C		x		x		)	K		

ALcontrol Lat	oratories	5	C	ER	TIF		ΓE	OF ANALYSIS		
SDG: 16 Job: H Client Reference: 40	60911-7 _SLR_EDH-58 05.00481.00033		Location Custome Attention	: er: n:	Valley SLR C Zak R	fields Consultin itchie	ng Lto		Order Number: Report Number: Superseded Report:	405/8599 378274
Saline Water (Sal W	)				14		14			
Results Legend		Lab Sample I	No(s)		13205		13205			
X Test					4		υ. Ω			
No Determinatio Possible	n	Custome Sample Refer	r ence		ES1		ES2			
		AGS Refere	nce							
		Depth (m	)							
		Containe	r	0.5l glass bottle (ALE208)	HNO3 Filtered (ALE204 Dissolved Metals Prese	500ml Plastic (ALE208) 0.5l glass bottle (ALE22)	HNO3 Filtered (ALE204			
Anions by Kone (w)	All		NDPs: 0 Tests: 2	<b>,</b>	<pre>c</pre>	x				
Conductivity (at 20 deg.C)	All		NDPs: 0 Tests: 2		(	x				
Dissolved Metals by ICP-MS	All		NDPs: 0 Tests: 2		x		x			
luoride	All		NDPs: 0 Tests: 2	<b>,</b>	(	x				
lercury Dissolved	All		NDPs: 0 Tests: 2		x		x			
/letals by iCap-OES Dissolved (W)	All		NDPs: 0 Tests: 2		x		x			
PAH Spec MS - Aqueous (W)	All		NDPs: 0 Tests: 2	x		x				
H Value	All		NDPs: 0 Tests: 2	<b>,</b>	<mark>(</mark>	x				

## **CERTIFICATE OF ANALYSIS**

Validated

_

_

SDG:         1609'           Job:         H_SL           Client Reference:         405.0	11-7 R_EDH-58 0481.00033		Location: Va Customer: SI Attention: Za	alleyfields _R Consulting Ltd ak Ritchie		Order Number: Report Number Superseded Re	405/8599 : 378274 port:	
Results Legend	C	ustomer Sample Ref.	ES1	ES2	TD	VF1	VF4	VF5
# ISO17025 accredited. M mCERTS accredited.								
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surrogate stand	dard to	Depth (m) Sample Type Date Sampled Sample Time	Saline Water (Sal W) 06/09/2016	Saline Water (Sal W) 06/09/2016	Water(GW/SW) 07/09/2016	Water(GW/SW) 07/09/2016	Water(GW/SW) 07/09/2016	Water(GW/SW) 07/09/2016
check the efficiency of the metho results of individual compounds	d. The within	Date Received	09/09/2016 160911-7	09/09/2016	09/09/2016 160911-7	09/09/2016 160911-7	09/09/2016 160911-7	09/09/2016 160911-7
(F) Trigger breach confirmed	ecovery	Lab Sample No.(s)	14132054	14132053	14132055	14132052	14132051	14132049
Component	LOD/Units	Method						
Fluoride	<0.5 mg/l	TM104			<0.5 #	<0.5 #	0.517 #	<0.5 #
Conductivity @ 20 deg.C	<0.005 mS/cm	TM120				24.5 #	27.4 #	23.7 #
Aluminium (diss.filt)	<0.002 mg/l	TM152			0.0703	<0.002	<0.002 #	<0.002 #
Antimony (diss.filt)	<0.00016 mg/l	TM152			# 0.00154 #		# 0.000178 #	
Arsenic (diss.filt)	<0.00051	TM152			0.00607	0.00117	0.00127	0.00109
Boron (diss filt)	mg/l	TM152			7 57	# 0.57	7.03	2 91
	40.000 mg/i	TWITE			#	0.07 #	#	2.51
Cadmium (diss.filt)	<0.00008 mg/l	TM152			0.000304 #	<0.00008 #	0.000174 #	<0.00008 #
Chromium (diss.filt)	<0.0012 mg/l	TM152			<0.0012 #	<0.0012 #	<0.0012 #	<0.0012 #
Copper (diss.filt)	<0.00085 mg/l	TM152			<0.00085 #	<0.00085 #	<0.00085 #	<0.00085 #
Manganese (diss.filt)	<0.00076	TM152			0.117 #	0.179	0.037 #	0.0277 #
Molybdenum (diss.filt)	<0.00062 mg/l	TM152			# 0.667 #	# 0.00246 #	0.22 #	0.00164 #
Nickel (diss.filt)	<0.00044	TM152			0.000602	<0.00044 #	0.000669 #	<0.00044 #
Selenium (diss.filt)	<0.00081 mg/l	TM152			0.00178	<0.00081 #	0.00139	0.00462 #
Vanadium (diss.filt)	<0.0013 mg/l	TM152			0.0464 #	<0.0013 #	<0.0013 #	0.00212 #
Zinc (diss.filt)	<0.0013 mg/l	TM152			<0.0013	0.0013	<0.0013 #	<0.0013 #
Mercury (diss.filt)	<0.00001 mg/l	TM183			<0.00001 #	<0.00001 #	<0.00001 #	<0.00001 #
Sulphate	<2 mg/l	TM184			1600 #	841 #	1650 #	338 #
Chloride	<2 mg/l	TM184			11000 #	10700 #	11500 #	10700 #
Calcium (diss.filt)	<0.012 mg/l	TM228			1160 #	683 #	616 #	426 #
Sodium (diss.filt)	<0.076 mg/l	TM228			5580 #	4820 #	5870 #	5890 #
Magnesium (diss.filt)	<0.036 mg/l	TM228			232 #	690 #	580 #	523 #
Potassium (diss.filt)	<1 mg/l	TM228			289 #	154 #	262 #	218 #
рН	<1 pH Units	TM256			8.08 #	7.91 #	7.9 #	8.04 #
Fluoride	<0.5 mg/l	TM104	0.841	0.789				
Conductivity @ 20 deg.C	<0.005 mS/cm	TM120	38.4 #	36.1 #				
Aluminium (diss.filt)	<0.002 mg/l	TM152	0.00212	0.0053				
Antimony (diss.filt)	<0.00016 mg/l	TM152	0.000471	<0.00096				
Arsenic (diss.filt)	<0.00051 mg/l	TM152	0.00229	0.00461				
Boron (diss.filt)	<0.005 mg/l	TM152	3.07	3.43				
Cadmium (diss.filt)	<0.00008 mg/l	TM152	<0.0008	<0.00048				
Chromium (diss.filt)	<0.0012 mg/l	TM152	<0.0012	<0.0072				
Copper (diss.filt)	<0.00085 mg/l	TM152	< 0.00085	0.00142				

## **CERTIFICATE OF ANALYSIS**

Results Legend		Customer Sample Ref.	ES1	ES2	TD	VF1	VF4	VF5
M mCERTS accredited.								
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)						
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type Date Sampled	Saline Water (Sal W) 06/09/2016	Saline Water (Sal W) 06/09/2016	Water(GW/SW) 07/09/2016	Water(GW/SW) 07/09/2016	Water(GW/SW) 07/09/2016	Water(GW/SW) 07/09/2016
** % recovery of the surrogate standa	rd to	Sample Time						
results of individual compounds wi	thin	Date Received SDG Ref	09/09/2016 160911-7	09/09/2016 160911-7	09/09/2016 160911-7	09/09/2016 160911-7	09/09/2016 160911-7	09/09/2016 160911-7
samples aren't corrected for the rec (F) Trigger breach confirmed	covery	Lab Sample No.(s)	14132054	14132053	14132055	14132052	14132051	14132049
1-5&+§@ Sample deviation (see appendix)	LOD/Uni	AGS Reference						
Manganese (diss.filt)	< 0.0007	6 TM152	0.0128	0.0507				
<b>U</b> ( )	mg/l							
Molybdenum (diss.filt)	<0.0006	2 TM152	0.0402	0.0565				
	mg/l							
Nickel (diss.filt)	<0.0004	4 TM152	0.000526	0.000569				
	mg/l							
Selenium (diss.filt)	<0.0008	11 TM152	<0.00081	<0.00486				
Vanadium (diss filt)	<0.001	3 TM152	0.00656	<0.0078				
	<0.001. ma/l	5 HWH52	0.00030	~0.0070				
Zinc (diss.filt)	< 0.001	3 TM152	0.00139	<0.0013				
	mg/l							
Mercury (diss.filt)	<0.0000	1 TM183	<0.00001	<0.00001				
	mg/l							
Sulphate	<2 mg/	/I TM184	2350	2200				
Chloride	<2 mg/	/I TM184	17200	16200				
Optoiner (diss fill)	10 010 -	// TM000	200	200				
Calcium (diss.fiit)	<0.012 m	1g/I I IVI228	396	392				
Sodium (diss filt)	<0.076 m	ng/L TM228	9700	8160				
	-0.07011	19/1 110220	5700	0100				
Magnesium (diss.filt)	<0.036 m	ng/l TM228	1100	905				
U ( )		5						
Potassium (diss.filt)	<1 mg/	/I TM228	363	346				
рН	<1 pH Ur	nits TM256	7.9	7.86				
			#	#				
		_						
		_						

## **CERTIFICATE OF ANALYSIS**

Results Legend           #         ISO17025 accredited.           M         mCERTS accredited.           aq         Aqueous / settled sample.		Customer Sample Ref.	VF6	VF7	VF8	VF9	VF10	VF11
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type Date Sampled	Water(GW/SW) 07/09/2016	Water(GW/SW) 07/09/2016	Water(GW/SW) 07/09/2016	Water(GW/SW) 06/09/2016	Water(GW/SW) 06/09/2016	Water(GW/SW) 06/09/2016
** % recovery of the surrogate standa check the efficiency of the method.	rd to The	Sample Time						
results of individual compounds wi	thin	Date Received SDG Ref	160911-7	160911-7	160911-7	160911-7	160911-7	160911-7
(F) Trigger breach confirmed	covery	Lab Sample No.(s)	14132050	14132048	14132056	14132059	14132047	14132057
1-5&+§@ Sample deviation (see appendix)		AGS Reference						
Component Fluoride	LOD/Units <0.5 mg/l	5 Method TM104	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Conductivity @ 20 deg C	<0.005	TM120	# 8 44	# 20.3	26.8	26	#	# 1 79
	mS/cm	111120	#	#	#	#	#	#
Aluminium (diss.filt)	<0.002 mg	/I TM152	0.118 #	<0.002 #	<0.002 #	<0.002 #	<0.002 #	<0.002 #
Antimony (diss.filt)	<0.00016 mg/l	TM152	0.000952 #	<0.00016 #	<0.00016 #	<0.00016 #	<0.00016 #	<0.00016 #
Arsenic (diss.filt)	<0.00051 mg/l	TM152	0.0364 #	0.00124 #	0.000659 #	0.00233 #	0.00208 #	<0.00051 #
Boron (diss.filt)	<0.005 mg	/I TM152	6.39 #	0.477 #	6.38 #	0.901 #	7.02	0.311 #
Cadmium (diss.filt)	<0.00008 ma/l	TM152	0.000171 #	<0.00008 #	0.000143 #	<0.00008 #	0.000134 #	<0.00008 #
Chromium (diss.filt)	<0.0012 ma/l	TM152	<0.0012 #	<0.0012 #	<0.0012 #	<0.0012 #	<0.0012 #	<0.0012 #
Copper (diss.filt)	<0.00085	TM152	<0.00085 #	<0.00085 #	0.00155 #	<0.00085 #		<0.00085 #
Manganese (diss.filt)	<0.00076	TM152	0.0116 #	0.297 #	0.00999 #	# 0.44 #	0.244 #	0.0627
Molybdenum (diss.filt)	<0.00062	TM152	0.302 #	# 0.0146 #	0.184 #	# 0.0489 #	0.278 #	0.00335
Nickel (diss.filt)	<0.00044	TM152		۳ 0.000758 #	0.00128	0.000937 #	0.00071 #	
Selenium (diss.filt)	<0.00081	TM152	0.00127 #	* <0.00081 #	* <0.00081 #	** <0.00081 #		~0.00081 #
Vanadium (diss.filt)	<0.0013	TM152		// # <0.0013		0.00367	# <0.0013	<0.0013
Zinc (diss.filt)	<0.0013	TM152	# <0.0013	# 0.00272	# 0.00327	# <0.0013	# <0.0013	# 0.0015 #
Mercury (diss.filt)	<0.00001	TM183	// ***********************************	# <0.00001 #	// ***********************************	// ***********************************	# <0.00001 #	# <0.00001 #
Sulphate	<2 mg/l	TM184	470 #	# 454 #	# 1660 #	# 759 #	# 597 #	6.9 #
Chloride	<2 mg/l	TM184	3000 #	9060 #	# 11200 #	# 11700 #	# 6430 #	380 #
Calcium (diss.filt)	<0.012 mg	/I TM228	298 #	<del>، "</del> 776			499 #	104 #
Sodium (diss.filt)	<0.076 mg	/I TM228		3770 #	5930 #			256 #
Magnesium (diss.filt)	<0.036 mg	/I TM228	29.6	508 #		549 #	222 #	25.8
Potassium (diss.filt)	<1 mg/l	TM228	71 #		254 #	254 #		27.4
рН	<1 pH Unit	s TM256	7.89	7.45 #	7.53	7.69	7.66	7.6
			#	#	#	#	#	#

### **CERTIFICATE OF ANALYSIS**

Results Legend		Customer Sample Ref.	VF12	VF3D		
# ISO17025 accredited. M mCERTS accredited						
aq Aqueous / settled sample.		Denth (m)				
diss.filt Dissolved / filtered sample.		Deptn (m) Sample Type	Water(GW/SW)	Water(GW/SW)		
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled	07/09/2016	06/09/2016		
** % recovery of the surrogate standa	ird to	Sample Time				
check the efficiency of the method.	The	Date Received	09/09/2016	09/09/2016		
samples aren't corrected for the rec	covery	SDG Ref	160911-7	160911-7		
(F) Trigger breach confirmed		Lab Sample No.(s)	14132058	14132046		
Component		AGS Reference				
Eluorido	<0.5 m		<0.5	<0.5		
lidolide	<b>∼</b> 0.3 III	g/i iivii04	۳.J ۳	۳0.J ۳		
			#	#		
Conductivity @ 20 deg.C	<0.00	5 TM120	1.27	2.8		
	mS/cn	ו	#	#	 	
Aluminium (diss.filt)	<0.002 r	ng/l TM152	<0.002	<0.002		
			#	#		
Antimony (diss filt)	<0.000	16 TM152	<0.00016	<0.00016		
	-0.000 ma/l	10 110102	40.00010	40.00010		
	111g/1	F4 T1450	#	#		
Arsenic (diss.filt)	<0.000	51 IM152	<0.00051	0.000528		
	mg/l		#	#		
Boron (diss.filt)	<0.005 r	ng/l TM152	0.308	0.407		
			#	#		
Cadmium (diss filt)	<0.000	08 TM152	<0.00008	<0.00008		
	ma/l		4	4		
Observations (d)(1)	111y/l	0 714/50	#	#		 
Chromium (diss.filt)	<0.001	2 IM152	<0.0012	<0.0012		
	mg/l		#	#		 
Copper (diss.filt)	<0.000	85 TM152	<0.00085	<0.00085		
	mg/l		#	#		
Manganese (diss filt)	<0.000	76 TM152	0 0741	0.0977		
	-0.000 ma/l		4	4		
	111g/1	00 TM450	#	#		 
Molybdenum (diss.filt)	<0.000	62 IM152	0.000819	0.000763		
	mg/l		#	#	 	 
Nickel (diss.filt)	<0.000	44 TM152	0.000526	<0.00044		
	mg/l		#	#		
Selenium (diss filt)	<0.000	81 TM152	<0.00081	<0.00081		
	-0.0000 ma/l		40.00001	40.00001		
	111y/1	0 714/50	#	#		
Vanadium (diss.filt)	<0.001	3 IM152	<0.0013	0.00132		
	mg/l		#	#		
Zinc (diss.filt)	<0.001	3 TM152	0.00341	0.00723		
	mg/l		#	#		
Mercury (diss filt)	<0.000	01 TM183	<0.00001	<0.00001		
	-0.000	111100	-0.00001 #	-0.00001 #		
0.11.1	ing/i	// T1404	#	#		
Sulphate	<2 mg	j/I IM184	<2	<2		
			#	#	 	
Chloride	<2 mg	/I TM184	286	903		
			#	#		
Calcium (diss filt)	<0.012 r	ng/  TM228	98.4	138		
	-0.0121	IIg/I IIWZZO		100 #		
	0.070	# <b>T</b> 1000	#	#		
Sodium (diss.filt)	<0.076 r	ng/I I M228	143	378		
			#	#		
Magnesium (diss.filt)	<0.036 r	ng/I TM228	22.5	48.7		
			#	#		
Potassium (diss.filt)	<1 mc	/I TM228	26.2	30.2		
. ,	^۳		#	#		
nH	<1 r⊔ 1	nite TM256	π Ω 11	π 7 71		 
ווק	<i ph="" td="" u<=""><td>11115 I IVIZOD</td><td>0.11</td><td>1.11</td><td></td><td></td></i>	11115 I IVIZOD	0.11	1.11		
			#	#		 
				I		

ALcontrol Labor	ratories	5	~==						Validated
SDG:         16091           Job:         H_SL           Client Reference:         405 0	11-7 R_EDH-58 0481.00033		CER Location: Customer: Attention:	Valleyfields SLR Consulting Ltd Zak Ritchie	NALYSIS		Order Number: Report Number: Superseded Rep	405/8599 378274 ort:	
PAH Spec MS - Aqueou	s (W)								
Results Legend # ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample.		Customer Sample Ref.	E\$1	ES2	TD		VF1	VF4	VF5
diss.tilt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surrogate stand	lard to	Sample Type Date Sampled Sample Time	Saline Water (Sal W) 06/09/2016	Saline Water (Sal W) 06/09/2016	Water(GW/SW) 07/09/2016		Water(GW/SW) 07/09/2016	Water(GW/SW) 07/09/2016	Water(GW/SW) 07/09/2016
check the efficiency of the metho results of individual compounds samples aren't corrected for the r	d. The within ecovery	Date Received SDG Ref	09/09/2016 160911-7 14132054	09/09/2016 160911-7 14132053	09/09/2016 160911-7 14132055		09/09/2016 160911-7 14132052	09/09/2016 160911-7 14132051	09/09/2016 160911-7 14132049
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)		AGS Reference	14102004	14102000	14102000		14102002	14102001	14102040
Component Naphthalene (ag)	<0.00	D1 TM178			<0.0001		<0.0001	<0.0001	<0.0001
Acenaphthene (aq)	mg/l <0.000	015 TM178			<0.000015	#	# <0.000015	# <0.000015	# <0.000015
	mg/l				0.000044	#	#	#	#
Acenaphthylene (aq)	<0.000 mg/l	011 IM178			<0.000011	#	<0.000011 #	<0.000011 #	<0.000011 #
Fluoranthene (aq)	<0.000 mg/l	017 TM178			<0.000017	#	<0.000017 #	<0.000017 #	<0.000017 #
Anthracene (aq)	<0.000 mg/l	015 TM178			<0.000015	#	<0.000015 #	<0.000015 #	<0.000015 #
Phenanthrene (aq)	<0.000 mg/l	D22 TM178			<0.000022	#	<0.000022 #	<0.000022 #	<0.000022 #
Fluorene (aq)	<0.000 mg/l	014 TM178			<0.000014	#	<0.000014 #	<0.000014 #	<0.000014 #
Chrysene (aq)	<0.000 mg/l	013 TM178			<0.000013	#	<0.000013 #	<0.000013 #	<0.000013 #
Pyrene (aq)	<0.000 mg/l	015 TM178			<0.000015	#	<0.000015 #	<0.000015 #	0.000016 #
Benzo(a)anthracene (aq)	<0.000 mg/l	017 TM178			<0.000017	#	<0.000017 #	<0.000017 #	<0.000017 #
Benzo(b)fluoranthene (aq)	<0.000 mg/l	023 TM178			<0.000023	#	<0.000023 #	<0.000023 #	<0.000023 #
Benzo(k)fluoranthene (aq)	<0.000 mg/l	027 TM178			<0.000027	#	<0.000027 #	<0.000027 #	<0.000027 #
Benzo(a)pyrene (aq)	<0.000 mg/l	009 TM178			<0.00009	#	<0.00009	<0.00009	<0.00009 #
Dibenzo(a,h)anthracene (aq)	<0.000 mg/l	D16 TM178			<0.000016	#	<0.000016 #	<0.000016 #	<0.000016 #
Benzo(g,h,i)perylene (aq)	<0.000 mg/l	016 TM178			<0.000016	#	<0.000016 #	<0.000016 #	<0.000016 #
Indeno(1,2,3-cd)pyrene (aq)	<0.000 mg/l	014 TM178			<0.000014	#	<0.000014 #	<0.000014 #	<0.000014 #
PAH, Total Detected USEPA 16 (aq)	<0.000 mg/l	344 TM178			<0.000344		<0.000344	<0.000344	<0.000344
Naphthalene (aq)	<0.00 mg/l	01 TM178	<0.0001	<0.0001 # #					
Acenaphthene (aq)	<0.000 mg/l	015 TM178	<0.000015	<0.000015 # #					
Acenaphthylene (aq)	<0.000 mg/l	011 TM178	<0.000011	<0.000011 # #					
Fluoranthene (aq)	<0.000 mg/l	D17 TM178	<0.000017	0.000063					
Anthracene (aq)	<0.000 mg/l	015 TM178	<0.000015	<0.000015 # #					
Phenanthrene (aq)	<0.000 mg/l	022 TM178	<0.000022	0.000029					
Fluorene (aq)	<0.000 mg/l	014 TM178	<0.000014	<0.000014 #					
Chrysene (aq)	<0.000 mg/l	D13 TM178	<0.000013	0.000035					
Pyrene (aq)	<0.000 mg/l	015 TM178	<0.000015	0.000065					
Benzo(a)anthracene (aq)	<0.000 mg/l	017 TM178	<0.000017	0.000025					
Benzo(b)fluoranthene (aq)	<0.000 mo/l	023 TM178	<0.000023	0.000044 # #					
Benzo(k)fluoranthene (aq)	<0.000 ma/l	027 TM178	<0.000027	<0.000027 # <u>#</u>					
Benzo(a)pyrene (aq)	<0.000 mo/l	009 TM178	<0.00009	0.00003 # #					
Dibenzo(a,h)anthracene (aq)	<0.000 mo/l	D16 TM178	<0.000016	<0.000016					
Benzo(g,h,i)perylene (aq)	<0.000 mg/l	016 TM178	<0.000016	0.000034					

(

### **CERTIFICATE OF ANALYSIS**

PAH Spec MS - Aqueous	5 (VV)							
Results Legend # ISO17025 accredited. M mCERTS accredited.	C	ustomer Sample Ref.	ES1	ES2	TD	VF1	VF4	VF5
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate stand check the efficiency of the method results of individual compounds w	ard to . The ithin	Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref	Saline Water (Sal W) 06/09/2016 09/09/2016 160911-7	Saline Water (Sal W) 06/09/2016 09/09/2016 160911-7	Water(GW/SW) 07/09/2016 09/09/2016 160911-7	Water(GW/SW) 07/09/2016 09/09/2016 160911-7	Water(GW/SW) 07/09/2016 09/09/2016 160911-7	Water(GW/SW) 07/09/2016 09/09/2016 160911-7
(F) Trigger breach confirmed	covery	Lab Sample No.(s)	14132054	14132053	14132055	14132052	14132051	14132049
1-5&+§@ Sample deviation (see appendix)	LOD/Units	AGS Reference						
Indeno(1,2,3-cd)pyrene (aq)	< 0.000014	TM178	<0.000014	0.000022				
	mg/l	TN4470	-0.000244	0.000247				
PAH, Total Detected USEPA 16	<0.000344 ma/l	IM178	<0.000344	0.000347				
(***)	gr							
	1							

SDC-	160011 7		Location	Valloufielde			105/0500	
SDG: Job: Client Poference:	H_SLR_EDH-58	3	Location: Customer:	valleytields SLR Consulting Ltd Zak Ritchic		Order Number: Report Number: Superseded Per	405/8599 378274	
AH Spec MS - A	405.00461.0003	3	Attention:	Zak Ritchie		Superseded Rep	ion.	
Results L # ISO17025 accredited	egend	Customer Sample Ref.	VF6	VF7	VF8	VF9	VF10	VF11
M mCERTS accredited aq Aqueous / settled sa	Imple.	Depth (m)						
liss.filt Dissolved / filtered s ot.unfilt Total / unfiltered sar	ample. nple.	Sample Type	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)
* Subcontracted test. ** % recovery of the su	progate standard to	Date Sampled Sample Time	07/09/2016	07/09/2016	07/09/2016	06/09/2016	06/09/2016	06/09/2016
results of individual samples aren't corre	compounds within	Date Received SDG Ref	09/09/2016 160911-7	09/09/2016 160911-7	09/09/2016 160911-7	09/09/2016 160911-7	09/09/2016 160911-7	09/09/2016 160911-7
(F) Trigger breach conf -5&+§@ Sample deviation (s	rmed ee appendix)	Lab Sample No.(s) AGS Reference	14132050	14132048	14132056	14132059	14132047	14132057
omponent	LOD/U	Jnits Method						
laphthalene (aq)	<0.0	001 TM178	<0.0001	<0.0001	<0.0001 # #	<0.0001 #	<0.0001 #	<0.0001
cenaphthene (aq)	<0.00	0015 TM178	<0.000015	<i>"</i> <0.000015	<i>* * * * * * * * * *</i>	<0.000015	<0.000015	<0.000015
	mg	ı/I		#	# #	#	#	
cenaphthylene (aq)	<0.00	0011 TM178	<0.000011	<0.000011	<0.000011	<0.000011	<0.000011	<0.000011
luoranthene (ag)	<0.00	0017 TM178	<0.000017	# <0.000017	# # <0.000017	# <0.000017	<0.000017	<0.000017
laorananono (aq)	mg	j/l	0.00001	#	# #	#	#	0.000011
nthracene (aq)	<0.00	0015 TM178	<0.000015	<0.000015	<0.000015	<0.000015	<0.000015	<0.000015
Phenanthropo (ca)	mg	1/I 0022 TM4179	<0.000000	#	# #	<0 000022	#	<0.000000
nenanullene (aq)	<0.00 mc	0022 ΠΝΠ/Ծ  /	<0.000022	#	~0.000022 # #	~u.uuuu∠z #	~u.uuuu22 #	<u><u></u>~0.000022</u>
Fluorene (aq)	<0.00	0014 TM178	<0.000014	<0.000014	<0.000014	<0.000014	<0.000014	<0.000014
	mg	J/I	0.000015	#	# #	#	#	
Chrysene (aq)	<0.00 mr	0013 TM178	<0.000013	<0.000013	<0.000013 # #	<0.000013 #	<0.000013 #	<0.000013
yrene (aq)	<0.00	, 0015 TM178	<0.000015	<0.000015	<0.000015	* <0.000015	<0.000015	<0.000015
	mg	j/l		#	# #	#	#	
enzo(a)anthracene (aq)	<0.00	0017 TM178	<0.000017	<0.000017	<0.000017 #	<0.000017	<0.000017	<0.000017
enzo(b)fluoranthene (ac	) <0.00	0023 TM178	<0.000023	* <0.000023	# # <0.000023	# <0.000023	<0.00023	<0.000023
	"	ı/I		#	# #	#	#	
enzo(k)fluoranthene (ac	) <0.00	0027 TM178	<0.000027	<0.000027	<0.000027	<0.000027	<0.000027	<0.000027
enzo(a)pyrene (ag)	mg <0.00	0009 TM178	<0 00000	# <0.00000	# # <0.00000	# <0.00000	# <0.00000	<0 00000
	~0.00 mg	j/l	-v.v0000ð	#	##	-0.00005	#	\$0.000003
Dibenzo(a,h)anthracene	aq) <0.00	0016 TM178	<0.000016	<0.000016	<0.000016	<0.000016	<0.000016	<0.000016
lonzo(a h i)non-long ()	mg	0016 TM479	~0.000.40	#	# #	#	#	<0.000046
enzo(g,n,i)perviene (aq)	<0.00 mc	ούτο ΠΜΠ78  /	<0.000016	<0.000016	<0.000016 # #	<0.000016 #	∿u.uuuu16 #	<0.000016
ndeno(1,2,3-cd)pyrene (	aq) <0.00	0014 TM178	<0.000014	<0.000014	<0.000014	<0.000014	<0.000014	<0.000014
	mg	I/I	0.000001	#	# #	#	#	0.0000111
'AH, Total Detected USE aα)	:PA 16 <0.00	U344 TM178	<0.000344	<0.000344	<0.000344	<0.000344	<0.000344	<0.000344
iq)		μ1						

#### 

			GEF	< I	FICALE OF	A	NALY SIS			
SDG:         16091'           Job:         H_SLF           Client Reference:         405.00	1-7 R_EDH-58 481 00033		Location: Customer: Attention:	Va SL Za	lleyfields R Consulting Ltd k Ritchie			Order Number: Report Number Superseded Re	405/8599 : 378274	
			Automation	20				- apoiloouou ito		
Results Legend	5 (VV)	Customer Sample Ref.	VF12		VF3D					
# ISO17025 accredited. M mCERTS accredited.										
aq Aqueous / settled sample.		Depth (m)								
tot.unfilt Total / unfiltered sample.		Sample Type	Water(GW/SW)		Water(GW/SW)					
** % recovery of the surrogate standa	ard to	Sample Time								
check the efficiency of the method results of individual compounds w	. The ithin	Date Received	09/09/2016		09/09/2016					
samples aren't corrected for the re (F) Trigger breach confirmed	covery	Lab Sample No.(s)	14132058		14132046					
1-5&+§@ Sample deviation (see appendix)		AGS Reference								
Nanhthalene (ag)	<0.00	nits Method	<0.0001		<0.0001	-				
Acenanhthene (ag)	-0.000 mg/l	015 TM178	<0.0001	#	<0.0001	#				
	mg/l	011 TM178	<0.000010	#	<0.000010	#				
	<0.000 mg/l	017 TM170	<0.000017	#	0.000011	#				
Fluorantnene (aq)	<0.000 mg/l		<0.000017	#	0.000028	#				
Anthracene (aq)	<0.000 mg/l	015 IM178	<0.000015	#	<0.000015	#				
Phenanthrene (aq)	<0.000 mg/l	022 IM178	<0.000022	#	0.000074	#				
Fluorene (aq)	<0.000 mg/l	014 TM178	<0.000014	#	0.000028	#				
Chrysene (aq)	<0.000 mg/l	013 TM178	<0.000013	#	<0.000013	#				
Pyrene (aq)	<0.000 mg/l	015 TM178	<0.000015	#	0.000044	#				
Benzo(a)anthracene (aq)	<0.000 mg/l	017 TM178	<0.000017	#	0.000019	#				
Benzo(b)fluoranthene (aq)	<0.000 mg/l	023 TM178	<0.000023	#	<0.000023	#				
Benzo(k)fluoranthene (aq)	<0.000 mg/l	027 TM178	<0.000027	#	<0.000027	#				
Benzo(a)pyrene (aq)	<0.000 mg/l	009 TM178	<0.00009	#	<0.00009	#				
Dibenzo(a,h)anthracene (aq)	<0.000 mg/l	016 TM178	<0.000016	#	<0.000016	#				
Benzo(g,h,i)perylene (aq)	<0.000 mg/l	016 TM178	<0.000016	#	<0.000016	#				
Indeno(1,2,3-cd)pyrene (aq)	<0.000 mg/l	014 TM178	<0.000014	#	<0.000014	#				
PAH, Total Detected USEPA 16 (aq)	<0.000 mg/l	344 TM178	<0.000344		<0.000344					

### **CERTIFICATE OF ANALYSIS**

Validated

SDG: 160911-7 Location: Valleyfields Order Number: 405/8599 H_SLR_EDH-58 378274 Job: Customer: SLR Consulting Ltd Report Number: **Client Reference:** 405.00481.00033 Attention: Zak Ritchie Superseded Report:

## Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser		
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM178	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS in Waters		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM228	US EPA Method 6010B	Determination of Major Cations in Water by iCap 6500 Duo ICP-OES		
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

Chemical testing (unless subcontracted) performed at ALcontrol Laboratories Hawarden (Method codes TM) or ALcontrol Laboratories Aberdeen (Method codes S).

### **CERTIFICATE OF ANALYSIS**

Validated

SDG:	160911-7	Location:	Valleyfields	Order Number:	405/8599
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	378274
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:	

## **Test Completion Dates**

Lab Sample No(s)	14132054	14132053	14132055	14132052	14132051	14132049	14132050	14132048	14132056	14132059
Customer Sample Ref.	ES1	ES2	TD	VF1	VF4	VF5	VF6	VF7	VF8	VF9
AGS Ref.										
Depth										
Туре	SALINE_D	SALINE_D	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID
Anions by Kone (w)	13-Sep-2016	13-Sep-2016	13-Sep-2016	13-Sep-2016	13-Sep-2016	13-Sep-2016	13-Sep-2016	13-Sep-2016	13-Sep-2016	13-Sep-2016
Conductivity (at 20 deg.C)	13-Sep-2016	13-Sep-2016	13-Sep-2016	13-Sep-2016	13-Sep-2016	13-Sep-2016	13-Sep-2016	13-Sep-2016	13-Sep-2016	13-Sep-2016
Dissolved Metals by ICP-MS	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016
Fluoride	13-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016
Mercury Dissolved	16-Sep-2016	16-Sep-2016	16-Sep-2016	16-Sep-2016	16-Sep-2016	16-Sep-2016	16-Sep-2016	16-Sep-2016	16-Sep-2016	16-Sep-2016
Metals by iCap-OES Dissolved (W)	14-Sep-2016	15-Sep-2016	15-Sep-2016	15-Sep-2016	15-Sep-2016	15-Sep-2016	15-Sep-2016	15-Sep-2016	15-Sep-2016	15-Sep-2016
PAH Spec MS - Aqueous (W)	15-Sep-2016	15-Sep-2016	15-Sep-2016	15-Sep-2016	15-Sep-2016	16-Sep-2016	15-Sep-2016	16-Sep-2016	15-Sep-2016	15-Sep-2016
pH Value	13-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016	14-Sep-2016
Lab Sample No(s)	14132047	14132057	14132058	14132046						·
Lab Sample No(s) Customer Sample Ref.	14132047 VF10	14132057 VF11	14132058 VF12	14132046 VF3D						
Lab Sample No(s) Customer Sample Ref. AGS Ref.	14132047 VF10	14132057 VF11	14132058 VF12	14132046 VF3D			·			
Lab Sample No(s) Customer Sample Ref. AGS Ref. Depth	14132047 VF10	14132057 VF11	14132058 VF12	14132046 VF3D			·			
Lab Sample No(s) Customer Sample Ref. AGS Ref. Depth Type	14132047 VF10 LIQUID	14132057 VF11	14132058 VF12	14132046 VF3D LIQUID						
Lab Sample No(s) Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (w)	14132047 VF10 LIQUID 13-Sep-2016	14132057 VF11 LIQUID 13-Sep-2016	14132058 VF12 LIQUID 13-Sep-2016	14132046 VF3D LIQUID 13-Sep-2016						
Lab Sample No(s) Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (w) Conductivity (at 20 deg.C)	14132047 VF10 LIQUID 13-Sep-2016 13-Sep-2016	14132057 VF11 LIQUID 13-Sep-2016 13-Sep-2016	14132058 VF12 LIQUID 13-Sep-2016 13-Sep-2016	14132046 VF3D LIQUID 13-Sep-2016 13-Sep-2016	* - - -					
Lab Sample No(s) Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (w) Conductivity (at 20 deg.C) Dissolved Metals by ICP-MS	14132047 VF10 LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016	14132057 VE11 LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016	14132058 VF12 LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016	14132046 VF3D LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016	* - - -					
Lab Sample No(s) Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (w) Conductivity (at 20 deg.C) Dissolved Metals by ICP-MS Fluoride	14132047 VF10 LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016 14-Sep-2016	14132057 VF11 LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016 14-Sep-2016	14132058 VF12 LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016 14-Sep-2016	14132046 VF3D LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016 14-Sep-2016	*					
Lab Sample No(s) Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (w) Conductivity (at 20 deg.C) Dissolved Metals by ICP-MS Fluoride Mercury Dissolved	14132047 VF10 LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016 14-Sep-2016 14-Sep-2016	14132057 VF11 LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016 14-Sep-2016 16-Sep-2016	14132058 VF12 LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016 14-Sep-2016 14-Sep-2016	14132046 VF3D LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016 14-Sep-2016 14-Sep-2016						
Lab Sample No(s) Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (w) Conductivity (at 20 deg.C) Dissolved Metals by ICP-MS Fluoride Mercury Dissolved Metals by iCap-OES Dissolved (W)	14132047 VF10 LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016 14-Sep-2016 14-Sep-2016 16-Sep-2016	14132057 VF11 LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016 14-Sep-2016 14-Sep-2016 15-Sep-2016	14132058 VF12 LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016 14-Sep-2016 14-Sep-2016 16-Sep-2016	14132046 VF3D LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016 14-Sep-2016 16-Sep-2016 14-Sep-2016						
Lab Sample No(s) Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (w) Conductivity (at 20 deg.C) Dissolved Metals by ICP-MS Fluoride Mercury Dissolved Metals by iCap-OES Dissolved (W) PAH Spec MS - Aqueous (W)	14132047 VF10 LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016 14-Sep-2016 16-Sep-2016 15-Sep-2016 16-Sep-2016	14132057 VF11 LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016 14-Sep-2016 14-Sep-2016 15-Sep-2016 15-Sep-2016	14132058 VF12 LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016 14-Sep-2016 16-Sep-2016 15-Sep-2016 15-Sep-2016	14132046 VF3D LIQUID 13-Sep-2016 13-Sep-2016 14-Sep-2016 14-Sep-2016 14-Sep-2016 14-Sep-2016 14-Sep-2016						

SDG:	160911-7	Location:	Valleyfields	Order Number:	405/8599
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	378274
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:	

## Appendix

**ALcontrol Laboratories** 

## General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP - No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately

11. Results relate only to the items tested.

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment . Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect

14. Product analyses - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, and Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol)

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17 Stones/debris are not routinely removed. We always endeavour to take а representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis

21. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

## Sample Deviations

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
0	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

#### Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised liaht microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	CommonName
Chrysof le	White Asbestos
Amosite	Brow n Asbestos
Cro d dolite	Blue Asbe stos
Fibrous Actinolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremol ite	-

#### Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.



SLR Consulting Ltd Floor 2 4/5 Lochside View Edinburgh Park Edinburgh Lanarkshire EH12 9DH

Attention: Zak Ritchie

## **CERTIFICATE OF ANALYSIS**

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 27 September 2016 H_SLR_EDH 160923-99 405.00481.00033 Valleyfields 379884

We received 1 sample on Thursday September 22, 2016 and 1 of these samples were scheduled for analysis which was completed on Tuesday September 27, 2016. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALcontrol Laboratories Hawarden (Method codes TM) or ALcontrol Laboratories Aberdeen (Method codes S).

Approved By:

Sonia McWhan Operations Manager



Alcontrol Laboratories is a trading division of ALcontrol UK Limited Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291.

ALcontrol	Laboratories	CEF	RTIFICATE OF AN	ALYSIS			Validated			
SDG:	160923-99	Location:	Valleyfields		Order Number:	405/8629				
Job: Client Reference:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd		Report Number: Superseded Report:	379884				
	Client Reference: 405.00481.00033 Attention: Zak Ritchie Superseded Report: Received Sample Overview									
Lab Sample No(	(S)	Customer Sample Ref.	-	AGS Ref.	Depth (m	)	Sampled Date			
14204544		VF8					21/09/2016			

Only received samples which have had analysis scheduled will be shown on the following pages.

ALcontrol L	aboratori	es	_					١	/alidated
CERTIFICATE OF ANALYSIS									
SDG: Job: Client Reference:	160923-99 H_SLR_EDH- 405.00481.000	58 )33	Location: Customer Attention:	r: :	Valleyfields SLR Consulting Ltd Zak Ritchie	Order Number: Report Number: Superseded Report:	405/8629 379884		
LIQUID				14					
Results Legend		Lab Sample N	lo(s)	204544					
No Determina Possible	ation	Custome Sample Refer	ence	VF8					
		AGS Refere	nce						
		Depth (m)	)						
		Containe		HNO3 Filtered (ALE204)					
Dissolved Metals by ICP-MS		All	NDPs: 0 Tests: 1	x					

	Laboratori	les	CE	RTIFICATE OF	ANALYSIS			Validated
SDG: Job: Client Reference:	160923-99 H_SLR_EDH- 405.00481.000	58 033	Location: Customer: Attention:	Valleyfields SLR Consulting Ltd Zak Ritchie		Order Number: Report Number: Superseded Rep	405/8629 : 379884 port:	
Results Lo # ISO17025 accredited. m CERTS accredited. A queueus / settled sa stiss.filt Dissolved / filtered sa Subcontracted test. * % recovery of the su check the efficiency results of individual samples aren't corre (F) Trigger breach confi 5&3§@ Sample deviation (se	gend mple. ample. pipe. rrogate standard to of the method. The compounds within cted for the recovery med es appendix)	Customer Sample R Depth ( Sample Ty Date Sample Sample Tin Date Receiv SOG R Lab Sample No. AGS Referen	ef. VF8 m) pe Water(GW/SW) ed 21/09/2016 ed 22/09/2016 lef 160923-99 (s) 14204544 CE					
pron (diss.filt)	<0.0	DO5 mg/l TM152	<0.0179					
				#				

ALcontrol I	Laboratories					Validated
		CER	RTIFICATE OF ANA	LYSIS		
SDG:	160923-99	Location:	Valleyfields	Order Number:	405/8629	
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	379884	
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:		

## Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

Chemical testing (unless subcontracted) performed at ALcontrol Laboratories Hawarden (Method codes TM) or ALcontrol Laboratories Aberdeen (Method codes S).

ALcontrol	Laboratories

(

### **CERTIFICATE OF ANALYSIS**

Validated

SDG:	160923-99	Location:	Valleyfields	Order Number:	405/8629
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	379884
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:	

# Dile No(s) 14204544

Lab Sample No(s)	14204544
Customer Sample Ref.	VF8
AGS Ref.	
Depth	
Туре	LIQUID
Dissolved Metals by ICP-MS	27-Sep-2016

## **Test Completion Dates**

SDG:	160923-99	Location:	Valleyfields	Order Number:	405/8629
Job:	H_SLR_EDH-58	Customer:	SLR Consulting Ltd	Report Number:	379884
Client Reference:	405.00481.00033	Attention:	Zak Ritchie	Superseded Report:	

## Appendix

**ALcontrol Laboratories** 

## General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP - No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately

11. Results relate only to the items tested.

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment . Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect

14. Product analyses - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, and Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol)

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17 Stones/debris are not routinely removed. We always endeavour to take а representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis

21. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

## Sample Deviations

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

#### Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised liaht microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name
Chrysof le	White Asbestos
Amosite	Brow n Asbestos
Cro a dolite	Blue Asbe stos
Fibrous Actinolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremol ite	-

#### Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.



SLR Consulting Ltd Floor 2 4/5 Lochside View Edinburgh Park Edinburgh Lanarkshire EH12 9DH

Attention: Adrian Cowe

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: customerservices@alcontrol.com Website: www.alsenviromental.co.uk

## **CERTIFICATE OF ANALYSIS**

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 13 December 2016 H_SLR_EDH 161203-86 405.00481.00033.01 Valleyfield 390094

We received 14 samples on Friday December 02, 2016 and 14 of these samples were scheduled for analysis which was completed on Tuesday December 13, 2016. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

Approved By:

Sonia McWhan Operations Manager



ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291.

						Validated
		CERTIFICATE C	OF ANALYSIS			
SDG:	161203-86	Client Reference:	405.00481.00033.01	Report Number:	390094	
Location:	Valleyfield	Order Number:	405/8729	Superseded Report:		

## **Received Sample Overview**

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
14643494	ES1			29/11/2016
14643495	ES2			29/11/2016
14643496	TD			29/11/2016
14643497	VF1			29/11/2016
14643502	VF4			30/11/2016
14643503	VF5			30/11/2016
14643504	VF6			30/11/2016
14643498	VF7			29/11/2016
14643505	VF8			30/11/2016
14643499	VF9			29/11/2016
14643500	VF10			29/11/2016
14643506	VF11			30/11/2016
14643507	VF12			30/11/2016
14643501	VF3D			30/11/2016

Only received samples which have had analysis scheduled will be shown on the following pages.

		~		· <del>- · · ·</del>	-1/	~ •	<b>-</b> -	~				/O'													Γ		Val	idated			
SDG:	161203-86	С	ER	ient	-IC Re	JA fere	IE nce:		- <b>A</b> 405	.004	<b>4L)</b> 481.	000	33.0	)1		R	ерс	rt N	umt	ber:			39(	)09 ²	4						
(ALS) Location:	Valleyfield		0	rder	Nu	mbe	er:		405	/87	29					S	upe	rse	ded	Rep	ort	:									
	Lah Sample No(s)			Lab Cample Na(a)				146	146				146	146		146				146	14		146 146		146	140		146		146	
Results Legend		<b>D(S)</b>			4349		4349		0	4349		4349		4350			4350		4300	1000		4349		4000	1350		4349				
X Test					4		G			ת		7		N			ω		4	•		8		c	л		9				
No Determination																															
	Customer				_												_			_		_			_		_				
	Sample Refere	nce			S1		S2		č	3		/F1		/+4	!		/F5		140	j		IF7		10	ורא		/F9				
			┢									+			+					+		-			-		—				
	AGS Referen	се																													
	Depth (m)																														
			0.5l gl	Disso	DIC.0	500m	HNO	0.51 gl	Disso	0.51 gl	500m	HNO	0 500m	Disso	0.5l gl	500m	HNO	0.51 nl	Disso	0.5l gl	Disso 500m	HNOS	500m	Disso	0.51 gl	500m	HNOS				
	Containor		ass bo	Ived M	3 Filtere	n Plasti	3 Filtere	ass bo	Ived M	ass bo	Ived M	3 Filtere	nl Plasti	Ved M	ass bo	Ived M	3 Filtere	nl Plasti	Ived M	ass bo	Ived M	3 Filtere	nl Plasti ass bo	Ived M	ass bo	Ived Ivi	Filtere				
	Container		ttle (AL	etals P	me (ALE	c (ALE	etals P	c (ALE ttle (AL	etals P	ttle (AL	etals P c (ALE	)d (ALE	c (ALE	etals P	tlie (AL	etals P c (Al F	)d (ALE	c (ALE ⊪⊳ (AI	etals P	tile (AL	etals P c (ALE	)d (ALE	c (ALE	etals P	ttle (AL	etals r c (ALE	)d (ALE				
			E227	reser	E221	208)	E204) reser	208) E227	reser	E227	reser 208)	204)	208) E337	:204) reser	E227	reser 2081	204)	208) E227	:204) reser	E227	reser 208)	204)	208) F227	reser	E227	reser 208)	204)				
Anions by Kone (w)	All	NDPs: 0 Tests: 14																													
		10000.11		x		x		)	(		x		x			x		x			x		x			x					
Conductivity (at 20 deg.C)	All	NDPs: 0 Tests: 14																													
		10000.14		x		x		)	(		x		x			x		x			x		x			x					
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 1/																													
		10000.14			x		X			x		x		×			x		)	(		x		2	×		X				
Fluoride	All	NDPs: 0 Tests: 14																													
		10000.14		x		x		)	(		x		x			x		x			x		x			x					
Mercury Dissolved	All	NDPs: 0 Tests: 1/																													
		163(3. 14		x			x		x		×	<mark>۲</mark>		x		X			x		X	:		x		7	<mark>د</mark>				
Metals by iCap-OES Dissolved (W)	All	NDPs: 0																													
		16515. 14			x		X			x		x		×	<u>د</u>		x		)	<mark>د</mark>		x		2	×		x				
PAH Spec MS - Aqueous (W)	All	NDPs: 0																						Ħ		Ħ					
		rests: 14	x		)	ĸ		x		x			x		x			x		x			x		x						
pH Value	All	NDPs: 0					+										Ħ		$  \uparrow  $		+		1	Ħ		Ħ	$\top$				
		i ests: 14		x		x		>	< l		x		x			x		x			x		X			x					

SDG:
Location:

ALS SDG: Location:	Valleyfield		0	orde	nt Ro er No	eter umb	ence ber:	ə:	40	)5.U )5/8	040 8729	9 9	JUU.	Superseded Report:	390094
LIQUID					14		Ŧ	-		14.			14		
Results Legend	Lab Sample No	o(s)			6435		0400	6405		6435			6435		
X Test					8		0	กี		70			01		
No Determination Possible	Customer Sample Refere	nce			VF10		Ч 	11244		VF12			VF3D		
	AGS Referen	се													
	Depth (m)														
	Container		0.5l glass bottle (ALE227	500ml Plastic (ALE208)	HNO3 Filtered (ALE204)	0.5l glass bottle (ALE208)	Dissolved Metals Preser	0.5l glass bottle (ALE227	500ml Plastic (ALE208)	HNO3 Filtered (ALE204)	0.5l glass bottle (ALE227	Dissolved Metals Preser	HNO3 Filtered (ALE204)		
Anions by Kone (w)	All	NDPs: 0 Tests: 14		x		) 	C		X			×			
Conductivity (at 20 deg.C)	All	NDPs: 0 Tests: 14	_	x		<b>,</b>	C		X		2	×			
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 14			x		)	Contraction 1 and the second secon		x			x		
Fluoride	All	NDPs: 0 Tests: 14		x		<b>)</b>	C		x		2	x			
Mercury Dissolved	All	NDPs: 0 Tests: 14		)	K		x		<b>)</b>	<mark>(</mark>		x			
Metals by iCap-OES Dissolved (W)	All	NDPs: 0 Tests: 14			x		<b>)</b>	<mark>&lt;</mark>		x			x		
PAH Spec MS - Aqueous (W)	All	NDPs: 0 Tests: 14	x			x		x			x				
pH Value	All	NDPs: 0 Tests: 14		x		>	<mark>(</mark>		x		2	×			

Results Legend		Customer Sample Ref	EQ1	EC)	TD	VE1	VEA	VEE
# ISO17025 accredited. M mCERTS accredited		oustomer oumple rei.	ESI	E02	ID	VFI	VF4	VF5
aq Aqueous / settled sample.		Depth (m)						
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)
* Subcontracted test. ** % recovery of the surrogate standa	rd to	Date Sampled	29/11/2016	29/11/2016	29/11/2016	29/11/2016	30/11/2016	30/11/2016
check the efficiency of the method.	The	Date Received	02/12/2016	02/12/2016	02/12/2016	02/12/2016	02/12/2016	02/12/2016
results of individual compounds wi samples aren't corrected for the rec	thin covery	SDG Ref	161203-86	161203-86	161203-86	161203-86	161203-86	161203-86
(F) Trigger breach confirmed 1-5&+s∕@ Sample deviation (see appendix)		Lab Sample No.(s)	14643494	14643495	14643496	14643497	14643502	14643503
Component	LOD/Un	its Method						
Fluoride	<0.5 m	g/l TM104	0.894	0.829	<0.5	<0.5	0.543	<0.5
			#	#	#	#	#	#
Conductivity @ 20 deg.C	<0.00	5 TM120	33.4	30.8	22.1	20	25.1	21.9
	mS/cm	1	#	#	#	#	#	#
Aluminium (diss.filt)	<0.002 r	ng/l TM152	<0.022	0.00822	0.0727	<0.002	<0.002	0.00568
			#	#	#	#	#	#
Antimony (diss.filt)	<0.000	16 TM152	<0.00176	0.000172	0.00129	0.000172	<0.00016	<0.00016
	mg/i	T1450	#	#	#	#	#	#
Arsenic (diss.filt)	<0.000	51 IM152	0.00626	0.00185	0.00625	0.00116	0.00143	0.00106
Poron (dian filt)		mg// TM152	2 2 2 2	#	9.74	0 529	# 61	2.02
Boron (diss.int)	<0.005 I	ng/i nviroz	3.33 #	2.42 #	0.74 #	0.320	0.1 #	2.23
Cadmium (diss filt)	<0 000	08 TM152	# <0.00088	# <0.000.05	# 0.000171	# <0.00008	# <0.0008	# <0 0000
	-0.0000 ma/l		-0.00000 #	-0.00000 #	±	-0.00000 #	-0.00000 #	-0.00000 #
Chromium (diss.filt)	<0 001	2 TM152	<0.0132	<del>۳</del> <0.0012	<0.0012	<0.0012		<0.0012
	ma/l		#	-0.0012 #	#	-0.0012	#	#
Copper (diss.filt)	<0.0008	85 TM152	<0.00935	<0.00085	<0.00085	<0.00085	<0.00085	<0.00085
	mg/l		#	#	#	#	#	#
Manganese (diss.filt)	<0.000	76 TM152	0.027	0.00736	0.12	0.172	0.0474	0.0523
C ( )	mg/l		#	#	#	#	#	#
Molybdenum (diss.filt)	<0.000	62 TM152	0.0373	0.0274	0.648	0.00599	0.218	0.000733
	mg/l		#	#	#	#	#	#
Nickel (diss.filt)	<0.0004	44 TM152	<0.00484	0.000631	<0.00044	<0.00044	0.000579	<0.00044
	mg/l		#	#	#	#	#	#
Selenium (diss.filt)	<0.0008	B1 TM152	<0.00891	<0.00081	0.00144	<0.00081	0.002	0.00162
	mg/l		#	#	#	#	#	#
Vanadium (diss.filt)	<0.001	3 TM152	<0.0143	0.00149	0.0403	<0.0013	<0.0013	0.00462
	mg/l		#	#	#	#	#	#
Zinc (diss.filt)	<0.001	3 TM152	<0.0143	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013
	mg/l		#	#	#	#	#	#
Mercury (diss.filt)	<0.0000	D1 TM183	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Outebate	mg/i		#	#	#	#	#	#
Sulphate	<2 mg	// 11/1184	2390 #	2270 #	1630	817 #	1570 "	212 #
Chlorido	<2 mg	// TM18/	17000	#	10000	10500	10000	10100
Chionde	~z mg	/1 11/1104	#	10500 #	10900 #	10500 #	10300 #	10100 #
Calcium (diss filt)	<0.012 r	mg/I TM228	387	361	π 1080		<del>#</del>	399
	-0.0121	19/1 11/1220	507 #	#	#	000 #	#	#
Sodium (diss.filt)	<0.076 r	na/l TM228	9570	8390	5510	4990	5990	4730
, , , , , , , , , , , , , , , , , , ,		Ŭ	#	#	#	#	#	#
Magnesium (diss.filt)	<0.036 r	ng/l TM228	1110	1070	265	560	528	486
		-	#	#	#	#	#	#
Potassium (diss.filt)	<1 mg	/I TM228	433	390	290	175	270	217
			#	#	#	#	#	#
рН	<1 pH U	nits TM256	7.81	7.82	8.21	7.88	7.86	8
			#	#	#	#	#	#

Results Legend		Customer Sample Ref.	VF6	VF7	VF8	VF9	VF10	VF11
# ISO17025 accredited. M mCERTS accredited.								
aq Aqueous / settled sample.		Depth (m)						
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)
* Subcontracted test.		Date Sampled	30/11/2016	29/11/2016	30/11/2016	29/11/2016	29/11/2016	30/11/2016
** % recovery of the surrogate standa check the efficiency of the method.	rd to The	Sample Time						
results of individual compounds wi	thin	Date Received	02/12/2016 161203-86	02/12/2016 161203-86	02/12/2016 161203-86	161203-86	02/12/2016 161203-86	02/12/2016 161203-86
samples aren't corrected for the rec (F) Trigger breach confirmed	covery	Lab Sample No.(s)	14643504	14643498	14643505	14643499	14643500	14643506
1-5&+§@ Sample deviation (see appendix)		AGS Reference						
Component	LOD/Un	its Method						
Fluoride	<0.5 m	g/I TM104	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
			#	#	#	#	#	#
Conductivity @ 20 deg.C	<0.00	5 TM120	13.4	17.1	23.1	22.5	14	1.76
	mS/cm	1 I	#	#	#	#	#	#
Aluminium (diss filt)	<0 002 r	ng/l TM152	0 163	0 00294	<0.002	0 00501	<0.002	<0.002
			#	#	#	#	#	#
Antimony (diss filt)	<0.000	16 TM152	0.000370	<0.00016	~0.00016	<0.00016	<0.00016	<0.00016
	-0.000 ma/l	10 1101102	0.000070 #	40.00010 #	40.00010 #	40.00010	40.00010	-0.00010 #
A	111g/1	T1450	#	#	#	#	#	#
Arsenic (diss.filt)	<0.000	51 IM152	0.0246	0.00143	0.000881	0.00217	0.00182	<0.00051
	mg/l		#	#	#	#	#	#
Boron (diss.filt)	<0.005 r	ng/l TM152	8.73	0.424	3.85	0.785	7.46	0.293
			#	#	#	#	#	#
Cadmium (diss.filt)	<0.000	08 TM152	0.000083	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008
	mg/l		#	#	#	#	#	#
Chromium (diss.filt)	< 0.001	2 TM152	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012
¥ 7	ma/l		#	#	#	#	- #	#
Conner (diss filt)	<0.000	85 TM152	π <0 00085	π <0 00085	<0 00085			 <በ በበበጸ5
	~0.000 ma/l		~0.00000 #	~0.00000 #	~0.00000 #	~0.00000 #	~0.00000 #	~0.00003 #
Manganaga (-1: fill)	-0.000	76 TM450	#	0.005	#	#	#	#
iviariganese (diss.filt)	<0.000	/o IM152	0.0597	0.285	0.0417	0.427	0.243	0.0023
	mg/i		#	#	#	#	#	#
Molybdenum (diss.filt)	<0.000	62 TM152	0.458	0.0113	0.107	0.0405	0.262	<0.00062
	mg/l		#	#	#	#	#	#
Nickel (diss.filt)	<0.000	44 TM152	0.000467	0.000684	0.000867	0.000906	0.000624	<0.00044
	mg/l		#	#	#	#	#	#
Selenium (diss.filt)	<0.000	81 TM152	<0.00081	<0.00081	0.00104	<0.00081	<0.00081	<0.00081
	ma/l		#	#	#	#	#	#
Vanadium (diss filt)	<0.001	3 TM152		 د0 0013		0.00248	 د0 ۵۵۱۵	<0.0013
vanauum (uiss.iiit)	-0.001 ma/l	5 1101152	0.00550 #	<0.0010 #	<0.0010 #	0.00240	<0.0015 #	<0.0013 #
Zine (dies filt)	<0.001	2 TM150	π <0.0012	π -0.0012	π -0.0012	π -0.0012	π <0.0012	π
Zinc (diss.iiit)	<0.001	3 1101152	×0.0013 ۳	×0.0015 ۳	×0.0015 ۳	×0.0013 ۳	×0.0013 بر	0.00243
	mg/i		#	#	#	#	#	#
Mercury (diss.filt)	<0.000	D1 TM183	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
	mg/l		#	#	#	#	#	#
Sulphate	<2 mg	ı/I TM184	722	483	1350	763	601	24.8
			#	#	#	#	#	#
Chloride	<2 mg	/I TM184	6190	8730	9610	11800	6370	377
			#	#	#	#	#	#
Calcium (diss.filt)	<0.012 r	na/l TM228	1070	862	490	1150	494	111
, , , , , , , , , , , , , , , , , , ,		°	#	#	#	#	#	#
Sodium (diss filt)	<0 076 r	ma/l TM228	2120	3680	5130	4400	3070	239
	-0.0701	iign iiii220	#	#	#	#	#	200 #
Magnasium (diss filt)	<0.026	mg// TM220	64.2	π Ε//	# EE2	# 610	π 042	20.0
Magnesium (uiss.iiit)	NU.000 I	lig/i livi220	04.2	J44 #	555 #	015 #	243 #	JU.Z #
Determine (direction)		.// TM000	#	#	#	#	#	#
rolassium (diss.tiit)	<1 mg	µi 1M228	267	159	220	1/2	145	25.5
			#	#	#	#	#	#
рН	<1 pH U	nits TM256	7.89	7.38	7.93	7.31	7.85	7.54
			#	#	#	#	#	#



Results Legend		Customer Sample Ref.	VF12	VF3D		
# ISO17025 accredited. M mCERTS accredited.						
aq Aqueous / settled sample.		Depth (m)				
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type	Water(GW/SW)	Water(GW/SW)		
* Subcontracted test.		Date Sampled	30/11/2016	30/11/2016		
** % recovery of the surrogate standa check the efficiency of the method.	rd to The	Sample Time				
results of individual compounds wi	thin	Date Received SDG Ref	161203-86	161203-86		
samples aren't corrected for the rec (F) Trigger breach confirmed	covery	Lab Sample No.(s)	14643507	14643501		
1-5&+§@ Sample deviation (see appendix)		AGS Reference				
Component	LOD/Un	its Method				 
Fluoride	<0.5 m	g/l TM104	<0.5	<0.5		
			#	#	 	 
Conductivity @ 20 deg.C	<0.005	5 TM120	1.21	3.09		
	mS/cm	1	#	#		
Aluminium (diss.filt)	<0.002 n	ng/l TM152	<0.002	<0.002		
			#	#		 
Antimony (diss.filt)	<0.0001	16 TM152	<0.00016	<0.00016		
	mg/l		#	#		
Arsenic (diss.filt)	<0.0005	51 TM152	0.000635	0.000755		
	mg/l		#	#		
Boron (diss.filt)	<0.005 n	ng/I TM152	0.33	0.514		
			#	#		
Cadmium (diss.filt)	<0.0000	)8 TM152	<0.0008	<0.00008		
	mg/l		#	#		
Chromium (diss.filt)	< 0.001	2 TM152	<0.0012	<0.0012		
(	ma/l		#	#		
Copper (diss filt)	<0.000	35 TM152	<0 00085	<0 00085		
coppor (also mil)	-0.0000 ma/l		-0.00000 #	-0.00000 #		
Manganese (diss filt)	<0 0007	76 TM152	n 0533	<del>#</del> 0 117		
manyanese (uiss.iiii)	~0.000/ ma/l		0.0000 #	U.III #		
Malukadanum (diaa filk)	-0.0006	20 TM150	#	#		
Molybaenum (diss.filt)	<0.0006	DZ 1101152	0.000951	0.00193		
	mg/i		#	#		
Nickel (diss.filt)	<0.0004	14 IM152	<0.00044	<0.00044		
	mg/l		#	#	 	 
Selenium (diss.filt)	<0.0008	31 TM152	<0.00081	<0.00081		
	mg/l		#	#		
Vanadium (diss.filt)	<0.001	3 TM152	<0.0013	<0.0013		
	mg/l		#	#		
Zinc (diss.filt)	<0.001	3 TM152	0.00294	0.00196		
	mg/l		#	#		
Mercury (diss.filt)	<0.0000	)1 TM183	<0.00001	<0.00001		
	mg/l		#	#		
Sulphate	<2 mg	/I TM184	<2	9.1		
	Ĵ		#	#		
Chloride	<2 mg	/I TM184	271	985		
	5		#	#		
Calcium (diss filt)	<0.012 n	ng/l TM228	84.4	161		
	0.012		#	#		
Sodium (diss filt)	<0.076 n	ng/l TM228	150	.397		
	0.0701		#	#		
Magnesium (diss filt)	<0.036 m	ng/I TM228	10.2	55 1		 
magneoium (uioo.iiit)	~0.030 II	119/1 11VIZZO	13.2	JJ.1 #		
Potossium (diss filt)	<1 m-	// TM220	27.2	4 3E 1		
1 012331111 (1133.1111)	<1 mg	/1 111/220	۷.۱۲	ວວ.1 		
<b>n</b> ∐	21 ml 1 1	nite TM056	7 07	0 05	 	 
יוק	< i pH U	11105 1 IVI200	1.91	с0.0 ш		
			#	#	 	 

### PAH Spec MS - Aqueous (W)

# 1801	Results Legend		Cu	istomer Sample Ref.	ES1	ES2	TD	VF1	VF4	VF5
# ISO1 M mCEI	RTS accredited.									
aq Aque diss.filt Disso	eous / settled sample. olved / filtered sample.			Depth (m)						
tot.unfilt Total	I / unfiltered sample.			Sample Type	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)
** % rec	covery of the surrogate standar	rd to		Sample Time		29/11/2010				
check result	ck the efficiency of the method. Its of individual compounds wit	The hin		Date Received	02/12/2016	02/12/2016	02/12/2016	02/12/2016	02/12/2016	02/12/2016
samp	ples aren't corrected for the rec	overy		SDG Ref	161203-86 14643494	161203-86 14643495	161203-86 14643496	161203-86 14643497	161203-86 14643502	161203-86 14643503
1-5&+§@ Samp	ple deviation (see appendix)			AGS Reference						
Component	t	LOD/U	nits	Method						
Naphthalene	e (aq)	<0.00	01	TM178	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
	( )	mg/l			#	#	#	#	#	#
Acenaphthen	ne (aq)	<0.000	015	TM178	<0.000015	<0.000015	<0.000015	<0.000015	<0.000015	<0.000015
A 1411	( )	mg/I	044	71470	#	#	#	#	#	#
Acenaphthyle	ene (aq)	<0.000	011	111178	<0.00011	<0.00011	×0.000011	<0.000011 #	<0.000011 #	0.000015
Fluerenthese	a (a.s.)	-0.000	017	TM170	#	#	#	#	#	#
FIUOIAIIUIEIIE	e (aq)	-0.000 ma/l	017	1101170	<0.000017	0.000022	<0.000017 #	<0.000017 #	<0.000017 #	0.000092 #
Anthracono (	(20)	<0.000	015	TM178	π ∠0.000015	π ∠0.000015	π ∠0.000015	π -0.000015	<i>π</i>	0.000036
Antinacene (a	(ay)	0.000 ma/l	015	1101170	~0.000013	~0.000013	~0.000013	~0.000013	<0.000015 #	0.000050 #
Phenanthren	ne (au)	<0.000	022	TM178	<0.000022	<0.000022	<0.000022	<0.000022	<0.000022	0 000092
1 Hondrid Hone	io (uq)	ma/l	ULL		#	#	#	#	#	#
Fluorene (ag)	0	<0.000	014	TM178	<0.000014	<0.000014	<0.000014	<0.000014	<0 000014	0.000022
	17	mg/l			#	#	#	#	#	#
Chrvsene (ad	a)	< 0.000	013	TM178	<0.000013	<0.000013	<0.000013	<0.000013	<0.000013	0.000077
- , (- 1	v	mg/l			#	#	#	#	#	#
Pyrene (ag)		< 0.000	015	TM178	<0.000015	0.000025	<0.000015	<0.000015	<0.000015	0.000124
<b>y</b> (- 1)		mg/l			#	#	#	#	#	#
Benzo(a)anth	hracene (aq)	< 0.000	017	TM178	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017	0.0001
		mg/l			#	#	#	#	#	#
Benzo(b)fluor	oranthene (aq)	<0.000	023	TM178	<0.000023	<0.000023	<0.000023	<0.000023	<0.000023	0.000121
		mg/l			#	#	#	#	#	#
Benzo(k)fluor	ranthene (aq)	<0.000	027	TM178	<0.000027	<0.000027	<0.000027	<0.000027	<0.000027	0.000051
		mg/l			#	#	#	#	#	#
Benzo(a)pyre	ene (aq)	<0.000	009	TM178	<0.00009	0.000013	<0.00009	<0.00009	<0.00009	0.0001
		mg/l			#	#	#	#	#	#
Dibenzo(a,h)a	)anthracene (aq)	<0.000	016	TM178	<0.00016	<0.000016	<0.000016	<0.000016	<0.000016	0.000023
		mg/l			#	#	#	#	#	#
Benzo(g,h,i)p	perylene (aq)	<0.000	016	TM178	<0.000016	0.000022	<0.000016	<0.000016	<0.000016	0.000083
		mg/l			#	#	#	#	#	#
Indeno(1,2,3-	-cd)pyrene (aq)	<0.000	014	TM178	<0.000014	0.000016	<0.000014	<0.000014	<0.000014	0.00006
		mg/l	0.1.1	714470	#	#	#	#	#	#
PAH, Total D	Detected USEPA 16	<0.000	344	IM178	<0.000344	<0.000344	<0.000344	<0.000344	<0.000344	0.000996
(aq)		iiig/i								

ΡΔΗ	Snec	MS -	Δαιιο	ו פוור	(W)
FAIL	Opec	1010 -	Aque	Jusi	

Results Legend	, (11)	Customer Sample Ref.	VF6	VF7	VF8	VF9	VE10	VE11
# ISO17025 accredited.			10	VI /	VIO	115	VIIO	VIII
M mCERTS accredited. ag Aqueous / settled sample.								
diss.filt Dissolved / filtered sample.		Depth (m) Sample Type	Wata (OW/OW)	Watar/OW/OWD	Wata (CM/CM)	Wata (CW/CW)	Weter(CN//CN/)	
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled	30/11/2016	29/11/2016	30/11/2016	29/11/2016	29/11/2016	30/11/2016
** % recovery of the surrogate standa	rd to	Sample Time						
check the efficiency of the method. results of individual compounds with	The thin	Date Received	02/12/2016	02/12/2016	02/12/2016	02/12/2016	02/12/2016	02/12/2016
samples aren't corrected for the rec	overy	SDG Ref	161203-86 14643504	161203-86	161203-86	161203-86 14643499	161203-86 14643500	161203-86 14643506
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)		AGS Reference	11010001	11010100	11010000	11010100	11010000	11010000
Component	LOD/Ur	its Method						
Naphthalene (aq)	<0.000	)1 TM178	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
	mg/l		#	#	#	#	#	#
Acenaphthene (aq)	<0.0000	)15 TM178	<0.000015	<0.000015	<0.00015	<0.000015	<0.000015	<0.000015
	mg/l		#	#	#	#	#	#
Acenaphthylene (aq)	<0.0000	)11 TM178	<0.000011	<0.000011	<0.000011	<0.000011	<0.000011	<0.000011
	mg/l		#	#	#	#	#	#
Fluoranthene (aq)	<0.0000	)17 TM178	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017	<0.000017
	mg/l		#	#	#	#	#	#
Anthracene (ag)	<0.0000	)15 TM178	<0.00015	<0.00015	<0.00015	<0.000015	<0.000015	<0.000015
Υ D	mg/l		#	#	#	#	#	#
Phenanthrene (ag)	< 0.0000	)22 TM178	<0.000022	0.00003	<0.000022	<0.000022	<0.000022	<0.000022
<b>C</b> 17	mg/l		#	#	#	#	#	#
Fluorene (ag)	<0.0000	)14 TM178	<0.000014	<0.000014	<0.000014	<0.000014	<0.000014	<0.00014
7. 1/	ma/l		#	#	#	#	#	#
Chrvsene (ag)	<0.000	)13 TM178	<0.000013	<0.000013	<0.000013	<0.000013	<0.000013	<0.000013
) 00000 (004)	ma/l		±	±	#	±	#	±
Pyrene (an)	<0.000	)15 TM178	π <0.000015	π 0.000022	π <0.00015	π <0.00015		π <0 00015
r yielle (aq)	-0.0000 ma/l		<0.000015 #	0.000022	~0.000013 #	~0.000015 #	~0.000015 #	~0.000013 #
Benzo(a)anthraceno (ag)	<0.0000	17 TM179	# <0.000017	# <0.000017	# <0.000017	# <0.000017	# <0.000017	# <0.000017
Benzo(a)antinacene (aq)	<0.0000 ma/l		<0.000017 #	<0.000017 #	<0.000017 #	<0.000017 #	<0.000017 #	<0.000017 #
Danza (h) fluaranthana (az)	-0.000	100 TM470	#	#	#	#	#	#
Benzo(b)filiorantnene (aq)	<0.0000	JZ3 IWI178	<0.000023	<0.000023	<0.000023	<0.000023 بر	×0.000023 بر	×0.000023 بر
	mg/i	07 TM470	#	#	#	#	#	#
Benzo(k)fluoranthene (aq)	<0.0000	127 IM178	<0.000027	<0.000027	<0.000027	<0.000027	<0.000027	<0.000027
	mg/i		#	#	#	#	#	#
Benzo(a)pyrene (aq)	<0.0000	009 TM178	<0.00009	<0.00009	<0.00009	<0.00009	<0.00009	<0.00009
	mg/l		#	#	#	#	#	#
Dibenzo(a,h)anthracene (aq)	<0.0000	016 TM178	<0.000016	<0.000016	<0.000016	<0.000016	<0.000016	<0.000016
	mg/l		#	#	#	#	#	#
Benzo(g,h,i)perylene (aq)	<0.0000	016 TM178	<0.000016	0.000017	<0.000016	<0.000016	<0.000016	<0.000016
	mg/l		#	#	#	#	#	#
Indeno(1,2,3-cd)pyrene (aq)	<0.0000	014 TM178	<0.000014	<0.000014	<0.000014	<0.000014	<0.000014	<0.000014
	mg/l		#	#	#	#	#	#
PAH, Total Detected USEPA 16	<0.0003	344 TM178	<0.000344	<0.000344	<0.000344	<0.000344	<0.000344	<0.000344
(aq)	mg/l							

#### PAH Spec MS - Aqueous (W)

[	Results Legend	,,	Customer Sample Ref	\/E12	VE3D		
# M	ISO17025 accredited. mCERTS accredited.			• • • • • • • • • • • • • • • • • • •	VF3D		
aq diss filt	Aqueous / settled sample.		Depth (m	)			
tot.unfilt	Total / unfiltered sample.		Sample Type	Water(GW/SW)	Water(GW/SW)		
**	% recovery of the surrogate standa	rd to	Sample Time				
	results of individual compounds wi	ithin	Date Received	02/12/2016 f 161203-86	02/12/2016 161203-86		
(F)	samples aren't corrected for the rec Trigger breach confirmed	covery	Lab Sample No.(s	14643507	14643501		
1-5&+§@ Compo	Sample deviation (see appendix)	LOD/U	AGS Reference	2			
Naphth	alene (aq)	<0.00 mg/l	01 TM178	<0.0001	<0.0001 #		
Acenap	hthene (aq)	<0.000 mg/l	015 TM178	<0.000015	<0.000015		
Acenap	hthylene (aq)	<0.000 mg/l	011 TM178	<0.000011 #	<0.000011 #		
Fluoran	thene (aq)	<0.000 mg/l	017 TM178	0.000036	<0.000017 #		
Anthrac	ene (aq)	<0.000 mg/	015 TM178	<0.000015	<0.000015 #		
Phenan	threne (aq)	<0.000 mg/l	022 TM178	0.000023	0.000042		
Fluoren	e (aq)	<0.000 ma/l	014 TM178	<0.000014 #	0.000017 #		
Chrysei	ne (aq)	<0.000 mg/l	013 TM178	<0.000013 #	<0.000013 #		
Pyrene	(aq)	<0.000 mg/l	015 TM178	0.000074 #	0.000023		
Benzo(a	a)anthracene (aq)	<0.000 mg/l	017 TM178	<0.000017 #	<0.000017 #		
Benzo(I	b)fluoranthene (aq)	<0.000 mg/l	023 TM178	<0.000023 #	<0.000023 #		
Benzo(	()fluoranthene (aq)	<0.000 mg/l	027 TM178	<0.000027 #	<0.000027 #		
Benzo(a	a)pyrene (aq)	<0.000 mg/l	009 TM178	<0.00009	<0.00009		
Dibenzo	o(a,h)anthracene (aq)	<0.000 mg/l	016 TM178	<0.000016 #	<0.000016 #		
Benzo(	g,h,i)perylene (aq)	<0.000 mg/l	016 TM178	0.000019 #	<0.000016 #		
Indeno(	1,2,3-cd)pyrene (aq)	<0.000 mg/l	014 TM178	<0.000014 #	<0.000014 #		
PAH, To (aq)	otal Detected USEPA 16	<0.000 mg/l	344 TM178	<0.000344	<0.000344		

(ALS)	

## 161203-86

## **CERTIFICATE OF ANALYSIS**

Validated

405.00481.00033.01 Report Number: Superseded Report: 390094 SDG: Client Reference: Valleyfield Order Number: 405/8729 Location:

## **Table of Results - Appendix**

Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser		
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM178	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS in Waters		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM228	US EPA Method 6010B	Determination of Major Cations in Water by iCap 6500 Duo ICP-OES		
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).



Validated

SDG:	161203-86	Client Reference:	405.00481.00033.01	Report Number:	390094
Location:	Valleyfield	Order Number:	405/8729	Superseded Report:	

## **Test Completion Dates**

Lab Sample No(s)	14643494	14643495	14643496	14643497	14643502	14643503	14643504	14643498	14643505	14643499
Customer Sample Ref.	ES1	ES2	TD	VF1	VF4	VF5	VF6	VF7	VF8	VF9
AGS Ref.										
Depth										
Туре	LIQUID									
Anions by Kone (w)	09-Dec-2016									
Conductivity (at 20 deg.C)	09-Dec-2016									
Dissolved Metals by ICP-MS	09-Dec-2016									
Fluoride	07-Dec-2016									
Mercury Dissolved	09-Dec-2016									
Metals by iCap-OES Dissolved (W)	12-Dec-2016	12-Dec-2016	09-Dec-2016	12-Dec-2016	12-Dec-2016	09-Dec-2016	09-Dec-2016	09-Dec-2016	12-Dec-2016	12-Dec-2016
PAH Spec MS - Aqueous (W)	09-Dec-2016									
pH Value	08-Dec-2016	08-Dec-2016	07-Dec-2016							

Lab Sample No(s)	14643500	14643506	14643507	14643501
Customer Sample Ref.	VF10	VF11	VF12	VF3D
AGS Ref.				
Depth				
Туре	LIQUID	LIQUID	LIQUID	LIQUID
Anions by Kone (w)	09-Dec-2016	09-Dec-2016	09-Dec-2016	09-Dec-2016
Conductivity (at 20 deg.C)	09-Dec-2016	09-Dec-2016	09-Dec-2016	09-Dec-2016
Dissolved Metals by ICP-MS	09-Dec-2016	09-Dec-2016	09-Dec-2016	09-Dec-2016
Fluoride	07-Dec-2016	07-Dec-2016	07-Dec-2016	07-Dec-2016
Mercury Dissolved	09-Dec-2016	09-Dec-2016	09-Dec-2016	09-Dec-2016
Metals by iCap-OES Dissolved (W)	13-Dec-2016	09-Dec-2016	09-Dec-2016	13-Dec-2016
PAH Spec MS - Aqueous (W)	09-Dec-2016	09-Dec-2016	09-Dec-2016	09-Dec-2016
pH Value	07-Dec-2016	08-Dec-2016	08-Dec-2016	08-Dec-2016



Appendix

### General

for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt . However, the integrity of the data may be compromised.

9. NDP - No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately

11. Results relate only to the items tested.

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content

13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect .

14. Product analyses - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 25 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis

> 21. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

> 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

> 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

#### Sample Deviations

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

### Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name		
Chrysofile	WhiteAsbestos		
Amosite	Brow n Asbestos		
Cro ci dolite	Blue Asbe stos		
Fibrous Actinolite	-		
Fib to us Anthop hyll ite	-		
Fibrous Tremolite	-		

#### Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than : - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.





VF4 • VF6
Appendix B

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

#### Valleyfield Ash Lagoons - 2016 Boron Data PFA Boreholes



Appendix B

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

# 2016 Annual Environmental Review Valleyfield Ash Lagoons - 2016 Cadmium Data









Appendix C

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

#### Valleyfield Ash Lagoons - Groundwater Elevation PFA Boreholes



Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

### Valleyfield Ash Lagoons - Antimony Data Supernatant



Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

### Valleyfield Ash Lagoons - Arsenic Data Supernatant



▲ SN

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

## Valleyfield Ash Lagoons - Boron Data Supernatant



Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

### Valleyfield Ash Lagoons - Cadmium Data Supernatant



Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

# Valleyfield Ash Lagoons - Molybdenum Data





Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

### Valleyfield Ash Lagoons - Selenium Data Supernatant



▲ SN

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

## Valleyfield Ash Lagoons - Vanadium Data Supernatant



Scottish Power Generation Ltd. SLR Ref: 405.00481.00033 Appendix E Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review Valleyfield Ash Lagoons - Antimony Data

# **Toe Drain**

March 2017



▲ TD

SLR

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

#### Valleyfield Ash Lagoons - Arsenic Data Toe Drain



Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

#### Valleyfield Ash Lagoons - Boron Data Toe Drain



Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

#### Valleyfield Ash Lagoons - Cadmium Data Toe Drain





SLR Ref: 405.00481.00033

Scottish Power Generation Ltd.

▲ TD

SLR

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

#### Valleyfield Ash Lagoons - Selenium Data Toe Drain



Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

#### Valleyfield Ash Lagoons - Vanadium Data Toe Drain



Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

## Valleyfield Ash Lagoons - Antimony Data Estuarine Locations



▲ ES1 ▲ ES2

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

#### Valleyfield Ash Lagoons - Arsenic Data Estuarine Locations





Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

### Valleyfield Ash Lagoons - Boron Data Estuarine Locations



▲ ES1 ▲ ES2

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

## Valleyfield Ash Lagoons - Cadmium Data Estuarine Locations





Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

# Valleyfield Ash Lagoons - Molybdenum Data

## **Estuarine Locations**





Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

#### Valleyfield Ash Lagoons - Selenium Data Estuarine Locations





Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

#### Valleyfield Ash Lagoons - Vanadium Data Estuarine Locations





Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

# 2016 Annual Environmental Review Valleyfield Ash Lagoons - 2016 Antimony Data



◆ VF1 ▲ VF3D ■ VF5 ● VF7 ◆ VF8 ▲ VF9 ■ VF10 ● VF11 ◆ VF12

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

## Valleyfield Ash Lagoons - 2016 Boron Data



◆ VF1 ▲ VF3D ■ VF5 ● VF7 ◆ VF8 ▲ VF9 ■ VF10 ● VF11 ◆ VF12

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

# 2016 Annual Environmental Review Valleyfield Ash Lagoons - 2016 Cadmium Data



◆ VF1 ▲ VF3D ■ VF5 ● VF7 ◆ VF8 ▲ VF9 ■ VF10 ● VF11 ◆ VF12



◆ VF1 ▲ VF3D ■ VF5 ● VF7 ◆ VF8 ▲ VF9 ■ VF10 ● VF11 ◆ VF12

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

# 2016 Annual Environmental Review Valleyfield Ash Lagoons - 2016 Selenium Data





◆ VF1 ▲ VF3D ■ VF5 ● VF7 ◆ VF8 ▲ VF9 ■ VF10 ● VF11 ◆ VF12

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

# 2016 Annual Environmental Review Valleyfield Ash Lagoons - 2016 Vanadium Data




Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review

# Valleyfield Ash Lagoons - Antimony Data



◆ VF1 --- Control Level --- · Trigger Level

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review





Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review



■ VF5 - - - Control Level - - - · Trigger Level

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review

#### Valleyfield Ash Lagoons - Antimony Data VF7



• VF7 --- Control Level --- Trigger Level

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review

### Valleyfield Ash Lagoons - Antimony Data VF8



◆ VF8 - - - Control Level - - - · Trigger Level

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review

#### Valleyfield Ash Lagoons - Antimony Data VF9



▲ VF9 --- Control Level --- Trigger Level

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review





Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review





Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review



• VF12 --- Control Level --- Trigger Level

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review

#### Valleyfield Ash Lagoons - Boron Data VF1



◆ VF1 --- Control Level --- Trigger Level

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review





Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review





Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review





Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review



◆ VF8 --- Control Level --- Trigger Level

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review



▲ VF9 --- Control Level --- Trigger Level

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review





Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review

#### Valleyfield Ash Lagoons - Boron Data VF11



• VF11 --- Control Level --- Trigger Level

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review



• VF12 --- Control Level --- Trigger Level

Scottish Power Generation Ltd. Appendix H Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review Valleyfield Ash Lagoons - Cadmium Data

SLR Ref: 405.00481.00033

March 2017





--- Control Level --- Trigger Level VF1 ٠

Scottish Power Generation Ltd. SLR Ref: 405.00481.00033 Appendix H Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review Valleyfield Ash Lagoons - Cadmium Data



March 2017



SLR

SLR Ref: 405.00481.00033

March 2017





- - Control Level - - - · Trigger Level VF5 _

SLR Ref: 405.00481.00033

March 2017





Control Level – – – · Trigger Level VF7 • - -

Appendix H

## Valleyfield Ash Lagoons - Cadmium Data





• VF8 - - - Control Level - - - · Trigger Level

Scottish Power Generation Ltd. SLR Ref: 405.00481.00033 Appendix H Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review Valleyfield Ash Lagoons - Cadmium Data VF9

March 2017





Scottish Power Generation Ltd. Appendix H Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review Valleyfield Ash Lagoons - Cadmium Dat SLR Ref: 405.00481.00033

March 2017





SLR

#### Valleyfield Ash Lagoons - Cadmium Data VF11





Appendix H

#### Valleyfield Ash Lagoons - Cadmium Data VF12



• VF12 --- Control Level --- Trigger Level

## Valleyfield Ash Lagoons - Vanadium Data





◆ VF1 --- Control Level --- Trigger Level

Appendix H

Appendix H

#### Valleyfield Ash Lagoons - Vanadium Data VF3D





Appendix H

# Valleyfield Ash Lagoons - Vanadium Data





■ VF5 --- Control Level --- Trigger Level

## Valleyfield Ash Lagoons - Vanadium Data

VF7



• VF7 --- Control Level --- Trigger Level

Appendix H

#### Valleyfield Ash Lagoons - Vanadium Data VF8

0.4 0.35 0.3 **Concentration (mg/l)** 0.2 0.15 0.2 0.1 0.05 0 01/01/2004 01/01/2006 01/01/2008 01/01/2010 01/01/2012 01/01/2014 01/01/2016 01/01/2018 Date

◆ VF8 --- Control Level --- · Trigger Level

Appendix H

## Valleyfield Ash Lagoons - Vanadium Data

VF9



▲ VF9 --- Control Level --- Trigger Level

Appendix H

#### Valleyfield Ash Lagoons - Vanadium Data VF10





Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review

#### Valleyfield Ash Lagoons - Vanadium Data VF11




Appendix H

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2015 Annual Environmental Review

### Valleyfield Ash Lagoons - Vanadium Data VF12



• VF12 --- Control Level --- Trigger Level

Appendix I

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

### Valleyfield Ash Lagoons - Groundwater Elevation



◆ VF1 ▲ VF3D ■ VF5 ● VF7 ◆ VF8 ▲ VF9 ■ VF10 ● VF11 ◆ VF12

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

### Valleyfield Ash Lagoons - Methane Concentration

### Trigger Level (1 % v/v)



Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

# Valleyfield Ash Lagoons - Methane Concentration

### VF3D Trigger Level (3.4 % v/v)



▲ VF3D --- Trigger Level

Δn	nendiv	1
AΡ	penuix	J

# Valleyfield Ash Lagoons - Methane Concentration

### VF5 Trigger Level (12.8 % v/v)



VF5 – – – Trigger Level

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

# Valleyfield Ash Lagoons - Methane Concentration





• VF12 – – – · Trigger Level

Δ,	nna	nn	vik	1
	Jhe	2110	ᇄ	J







A	ope	nd	ix	.1
· · ·	PPC	i iu	~	v



■ VF10 – – – · Trigger Level

•		
Δn	nondiv	
·γρ	PULIUIA	J

### 2016 Annual Environmental Review Valleyfield Ash Lagoons - Carbon Dioxide Concentration





• VF12 – – – · Trigger Level

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

### Valleyfield Ash Lagoons - Oxygen Concentration



◆ VF1 ▲ VF3D ◆ VF4 ■ VF5 ● VF6 ● VF7 ◆ VF8 ▲ VF9 ■ VF10 ● VF11 ◆ VF12

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

### Valleyfield Ash Lagoons - Methane Concentration



◆ VF1 ▲ VF3D ◆ VF4 ■ VF5 ● VF6 ● VF7 ◆ VF8 ▲ VF9 ■ VF10 ● VF11 ◆ VF12

### 2016 Annual Environmental Review Valleyfield Ash Lagoons - Carbon Dioxide Concentration



◆ VF1 ▲ VF3D ◆ VF4 ■ VF5 ● VF6 ● VF7 ◆ VF8 ▲ VF9 ■ VF10 ● VF11 ◆ VF12

Scottish Power Generation Ltd. Valleyfield Ash Lagoons: PPC/A/1004266 2016 Annual Environmental Review

# Valleyfield Ash Lagoons - Methane Concentration 2016 Data



Scottish Power Generation Ltd.
Valleyfield Ash Lagoons: PPC/A/1004266
2016 Annual Environmental Paviaw

#### 2016 Annual Environmental Review Valleyfield Ash Lagoons - Carbon Dioxide Concentration 2016 Data



◆ VF1 ▲ VF3D ◆ VF4 ■ VF5 ● VF6 ● VF7 ◆ VF8 ▲ VF9 ■ VF10 ● VF11 ◆ VF12

ABERDEEN

214 Union Street, Aberdeen AB10 1TL, UK T: +44 (0)1224 517405

#### AYLESBURY

7 Wornal Park, Menmarsh Road, Worminghall, Aylesbury, Buckinghamshire HP18 9PH, UK T: +44 (0)1844 337380

BELFAST

Suite 1 Potters Quay, 5 Ravenhill Road, Belfast BT6 8DN, UK, Northern Ireland T: +44 (0)28 9073 2493

#### BRADFORD-ON-AVON

Treenwood House, Rowden Lane, Bradford-on-Avon, Wiltshire BA15 2AU, UK T: +44 (0)1225 309400

BRISTOL Langford Lodge, 109 Pembroke Road, Clifton, Bristol BS8 3EU, UK T: +44 (0)117 9064280

#### CAMBRIDGE

8 Stow Court, Stow-cum-Quy, Cambridge CB25 9AS, UK T: + 44 (0)1223 813805

CARDIFF Fulmar House, Beignon Close, Ocean Way, Cardiff CF24 5PB, UK T: +44 (0)29 20491010

CHELMSFORD Unit 77, Waterhouse Business Centre, 2 Cromar Way, Chelmsford, Essex CM1 2QE, UK T: +44 (0)1245 392170

#### DUBLIN

7 Dundrum Business Park, Windy Arbour, Dundrum, Dublin 14 Ireland T: + 353 (0)1 2964667

#### EDINBURGH

4/5 Lochside View, Edinburgh Park, Edinburgh EH12 9DH, UK T: +44 (0)131 3356830

#### EXETER

69 Polsloe Road, Exeter EX1 2NF, UK T: + 44 (0)1392 490152

GLASGOW 4 Woodside Place, Charing Cross, Glasgow G3 7QF, UK T: +44 (0)141 3535037

#### GRENOBLE

BuroClub, 157/155 Cours Berriat, 38028 Grenoble Cedex 1, France T: +33 (0)4 76 70 93 41

#### GUILDFORD

65 Woodbridge Road, Guildford Surrey GU1 4RD, UK T: +44 (0)1483 889 800

#### LEEDS

Suite 1, Jason House, Kerry Hill, Horsforth, Leeds LS18 4JR, UK T: +44 (0)113 2580650

LONDON 83 Victoria Street, London, SW1H 0HW, UK T: +44 (0)203 691 5810

MAIDSTONE 19 Hollingworth Court, Turkey Mill, Maidstone, Kent ME14 5PP, UK T: +44 (0)1622 609242

#### MANCHESTER

8th Floor, Quay West, MediaCityUK, Trafford Wharf Road, Manchester M17 1HH, UK T: +44 (0)161 872 7564

#### NEWCASTLE UPON TYNE

Sailors Bethel, Horatio Street, Newcastle-upon-Tyne NE1 2PE, UK T: +44 (0)191 2611966

#### NOTTINGHAM

Aspect House, Aspect Business Park, Bennerley Road, Nottingham NG6 8WR, UK

T: +44 (0)115 9647280

#### SHEFFIELD

Unit 2 Newton Business Centre, Thorncliffe Park Estate, Newton Chambers Road, Chapeltown, Sheffield S35 2PW, UK T: +44 (0)114 2455153

#### SHREWSBURY

2nd Floor, Hermes House, Oxon Business Park, Shrewsbury SY3 5HJ, UK T: +44 (0)1743 239250

STAFFORD

8 Parker Court, Staffordshire Technology Park, Beaconside, Stafford ST18 0WP, UK T: +44 (0)1785 241755

STIRLING No. 68 Stirling Business Centre, Wellgreen, Stirling FK8 2DZ, UK T: +44 (0)1786 239900

WORCESTER Suite 5, Brindley Court, Gresley Road, Shire Business Park, Worcester WR4 9FD, UK T: +44 (0)1905 751310

### www.slrconsulting.com







Oil & Gas





Planning & Development Renewable & Low Carbon Waste N