

Investing in Rust

Shane Miller* JULY 2024

Research consistently a/ributes more than 50 percent of security vulnerabili8es to errors that
are prevented by using memory-safe programming languages. Despite those benefits, adop8on
of memory-safe languages is stalled in some domains, because memory-unsafe languages like C
and C++ have locked in the market. Unlike older memory-safe languages such as Java or Python,
the rela8vely new Rust language op8mizes efficiency with memory safety. Unfortunately, Rust’s
innova8ve design and implementa8on are incompa8ble with exis8ng engineering skills and
systems, crea8ng market fric8on for adop8on. This paper recommends U.S. public policy to
mi8gate that fric8on and foster the adop8on of memory-safe languages.

INTRODUCTION

In February 2024, a cybera0ack on UnitedHealthcare Group threatened the solvency of
thousands of U.S. hospitals, sent “a substanBal proporBon” of Americans’ medical records into
the dark web,1 and prevented untold thousands of paBents from receiving their prescripBons.
Some 94 percent of U.S. hospitals were financially impacted, with nearly 60 percent reporBng
daily losses over a million dollars.2 One leader of an Idaho medical center devastated by this
a0ack called it “a bigger deal financially than Covid.”3

This breach is just the latest in what’s become rouBne: cybera0acks taking advantage of the
increasing fragility of America’s criBcal technology. At least 299 U.S. hospitals reported

*Shane Miller is a Dis'nguished Advisor to the Rust Founda'on, where she was the founding chair of the board of
directors. Miller is also a senior fellow at the Atlan'c Council Cyber Statecra@ Ini'a've under the Digital Forensic
Research Lab and an advisory board member for the State of Open Con. She is the former founding leader of four
different organiza'ons at Amazon Web Services (AWS), including Rust open source.
1 Zack WhiMaker, “UnitedHealth Says Change Hackers Stole Health Data on ‘Substan'al Propor'on of People in
America,’” TechCrunch, April 22, 2024, hMps://techcrunch.com/2024/04/22/unitedhealth-change-healthcare-
hackers-substan'al-propor'on-americans/.
2 Noah Barsky, “UnitedHealth Paid Hackers $22 Million, Fixes Will Soon Cost Billions,” Forbes, June 7, 2024,
hMps://www.forbes.com/sites/noahbarsky/2024/04/30/unitedhealths-16-billion-tally-grossly-understates-
cyberaMack-cost/.
3 John Sakellariadis, “Hospitals Are Pleading for Help. The NSC May Be Close to Giving It,” Poli0co, March 4, 2024,
hMps://www.poli'co.com/newsleMers/weekly-cybersecurity/2024/03/04/hospitals-are-pleading-for-help-the-nsc-
may-be-close-to-giving-it-00144647.

Shane Miller, “Investing in Rust” JULY 2024

 2

cybera0acks last year alone,4 and health care is not a uniquely vulnerable sector. Some 80
percent of American school administrators say they have been the vicBms of ransomware
a0acks,5 causing schools to use “snow day” budgets for “cyber day” closures.6 Major
companies—Walmart, Samsung, 23andMe, MicrosoW, MGM Grand, Discord, T-Mobile,
ChatGPT—have reported catastrophic breaches. And that’s just in the past year.

In response to these growing a0acks, the White House has established an agenda to improve
the cybersecurity of criBcal American infrastructure, launching a series of execuBve orders,7
strategies,8 implementaBon plans,9 and direcBves.10 One of the consistent cornerstones of the
White House cybersecurity campaign is addressing memory-safety classes of vulnerabiliBes,
saying, “We, as a naBon, have the ability—and the responsibility—to reduce the a0ack surface
in cyberspace and prevent enBre classes of security bugs from entering the digital ecosystem
but that means we need to tackle the hard problem of moving to memory safe programming
languages.”11

Memory-safe programming languages prevent soWware engineers from making errors that are
frequently exploited by malicious actors, and that prevenBon has an outsized impact on
soWware security. Several industry analyses have concluded that memory-safe languages avoid
more than half of all security vulnerabiliBes, with both MicrosoW12 and Google13 research
a0ribuBng 70 percent of security vulnerabiliBes to using memory-unsafe languages. In addiBon
to security benefits, memory-safe languages reduce soWware maintenance expenses and
improve engineering agility. At the same Bme, factors that influence adopBon of new
technologies are slowing the spread of memory-safe languages in some domains. Public-private

4 Nicole Sganga, “Latest Hospital CyberaMack Shows How Health Care Systems’ Vulnerability Can Put Pa'ents at
Risk,” CBS News, Nov. 29, 2023, hMps://www.cbsnews.com/news/ardent-hospital-cyberaMack-health-care-system-
vulnerability/.
5 Lauraine Langreo, “7 Data Breaches That Le@ Schools in the Lurch,” Educa0on Week, Aug. 17, 2023,
hMps://www.edweek.org/technology/7-data-breaches-that-le@-schools-in-the-lurch/2023/08.
6 Kavitha Cardoza, “One Reason School CyberaMacks Are on the Rise? Schools Are Easy Targets for Hackers,”
Na'onal Public Radio All Things Considered, March 11, 2024,
hMps://www.npr.org/2024/03/11/1236995412/cybersecurity-hackers-schools-ransomware.
7 Execu've Office of the President [Joseph Biden]. Execu've Order 14028: Improving the Na'on’s Cybersecurity,
May 12, 2021. Federal Register, vol. 86, no. 2021-10460, pp. 26633–47,
hMps://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-na'ons-cybersecurity.
8 The White House, Na0onal Cybersecurity Strategy, March 1, 2023, hMps://www.whitehouse.gov/wp-
content/uploads/2023/03/Na'onal-Cybersecurity-Strategy-2023.pdf.
9 The White House, Na0onal Cybersecurity Strategy Implementa0on Plan, July 13, 2024,
hMps://www.whitehouse.gov/wp-content/uploads/2023/07/Na'onal-Cybersecurity-Strategy-Implementa'on-Plan-
WH.gov_.pdf.
10 The White House, Office of the Na'onal Cyber Director, “Future So@ware Should Be Memory Safe,” Press
Release, Feb. 26, 2024, hMps://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-
report/.
11 Ibid.
12 Sebas'an Fernandez, “A Proac've Approach to More Secure Code,” Microso@, July 16, 2019,
hMps://msrc.microso@.com/blog/2019/07/a-proac've-approach-to-more-secure-code/.
13 Chromium Security, “Memory Safety,” Google, hMps://www.chromium.org/Home/chromium-security/memory-
safety/.

Security by Design Paper Series www.lawfaremedia.org

 3

partnerships can address market fricBon with iniBaBves that highlight the business benefits and
lower the cost, complexity, and risk of memory-safe languages. Memory safety is good for
businesses and consumers, and strategic policies and investments can make it be0er.

Despite strong guidance in the past few years from agencies such as the NaBonal Security
Agency, which “recommend[ed] that organizaBons use memory safe languages when
possible,”14 li0le has changed. Analyst firm Redmonk’s 2023 language report noted, “The
dominant trend [is sBll] lack of movement. While the industry around these programming
languages is evolving rapidly, the inerBa of language tracBon has proven difficult to
overcome.”15 Memory-unsafe programming languages are not losing ground. The TIOBE
Index,16 which measures programming language popularity, found that increases in C++ were
equivalent to decreases in C from 2020 to 2024, keeping the overall popularity of memory-
unsafe programming languages unchanged, and other reputable indexes like PYPL17 report
similar trends.

Unsafe code remains prolific because (a) memory safety was added to programming language
design long aWer engineers started building the soWware foundaBonal to modern technology,
giving memory-unsafe languages a huge head start; (b) unBl Rust became viable, soWware could
not use memory-safe languages everywhere; and (c) market fricBon is slowing the adopBon of
Rust. Historically, safe languages (like Java, Python, and JavaScript) have produced slow systems
that consume far more resources than their unsafe predecessors. For resource-restricted
soluBons like mobile devices and the networks that connect them, safe languages have not
been an opBon. The relaBvely new Rust language offers a soluBon that combines the opBmized
efficiency of memory-unsafe languages like C and C++ with the security of modern memory
safety. As a result, there are far fewer cases where using a memory-safe language is not possible
today, because technology manufacturers no longer need to sacrifice security for efficiency.

Rust is a new memory-safe language that can be used for many soluBons previously without a
memory-safe opBon, like cloud compuBng and operaBng systems that require opBmized
performance and resources. Rust achieves this by enforcing memory safety at compile Bme,
whereas other memory-safe languages (like Java, Python, and JavaScript) use a feature called a
“garbage collector” to manage memory while soWware is running. The garbage collector
handles the challenges and risks of memory management for the engineer, but it requires far
more resources18 and forces systems to pause periodically for cleanup. Rust delivers memory
safety without resource and performance penalBes. To make that possible, Rust developers

14 U.S. Na'onal Security Agency, “So@ware Memory Safety,” Nov. 10, 2022,
hMps://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF.
15 Stephen O’Grady, “The RedMonk Programming Language Rankings: January 2023,” Redmonk, May 16, 2023,
hMps://redmonk.com/sogrady/2023/05/16/language-rankings-1-23.
16 TIOBE Index, TIOBE, hMps://www.'obe.com/'obe-index/.
17 PYPL Index, PYPL PopularitY of Programming Language, hMps://pypl.github.io/PYPL.html.
18 MaMhew Hertz and Emery D. Berger, “Quan'fying the Performance of Garbage Collec'on vs. Explicit Memory
Management,” Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applica0ons - OOPSLA '05, pp. 313–26. doi: 10.1145/1094811.1094836.

Shane Miller, “Investing in Rust” JULY 2024

 4

must follow strict coding rules that ensure memory is managed correctly in their soWware, and
the Rust compiler that transforms code into executable soWware rejects code that does not
adhere to those rules.

While Rust’s innovaBon fills a criBcal memory-safety gap, the language’s design and
implementaBon are incompaBble with exisBng engineering skills and systems, creaBng
substanBal market fricBon for technology manufacturer adopBon. Rust adop=on is slowed by
four of the five factors influen=al in the diffusion of a new idea or innova=on.19 In addiBon to
(a) incompaBbility and (b) its accompanying complexity, Rust struggles with (c) the observability
of adopBon and (d) relaBve advantage. RelaBve advantage is the perceived improvement of an
innovaBon, and adopBon is faster when relaBve advantage is high. PrevenBve innovaBons like
memory safety that lower the likelihood of a negaBve future event have a parBcularly slow rate
of adopBon, because the reward is far in the future without clear evidence of causality.20

Like any new technology, soWware made with Rust is also more expensive to build. Rust
developer salaries are among the highest paid,21 training exisBng engineers is challenging (only
47 percent of surveyed Rust engineers consider themselves producBve using the language), and
building support infrastructure for the thousands of open source projects used to write Rust is a
substanBal investment. At the same Bme, there is strong evidence that Rust lowers the cost of
soWware ownership by reducing maintenance costs over its total lifeBme. Building soWware can
take months or even years, but if that soWware is successful and customers use it, maintaining
the soWware will take decades. As Amazon Web Services DisBnguished Engineer Marc Brooker
said in 2020, “SoWware lasts a long Bme …. IniBal development is the easy, relaBvely cheap part
of building a system, and the expensive part … is maintaining it in producBon.”22

While soWware costs may be amorBzed by customers over just a few years, that soWware is
oWen used in producBon for significantly longer, because replacing business-criBcal soWware is
expensive and risky. As soWware becomes larger and more complex, the costs and risks of
replacing it grow. Researchers studying organizaBonal behavior and senBment with legacy
systems noted the common opinion that “by definiBon a legacy system is business criBcal. A
system that is old and obsolete and is not business criBcal would never reach the status of
legacy.”23 Frequently, only parts of legacy systems are replaced over Bme, while the original
soWware persists in producBon for some funcBonality.

19 EvereM M. Rogers, Diffusion of Innova0ons, 5th ed. (Free Press, 2003), 266.
20 Ibid, 234.
21 Afifa Mushtaque, “5 Highest-Paying Programming Languages in USA,” Insider Monkey, July 17, 2023,
hMps://www.insidermonkey.com/blog/5-highest-paying-programming-languages-in-usa-1168666/4/.
22 Marc Brooker, “Building Technology Standards at Amazon Scale,” YouTube, uploaded by AWS Events, Feb. 5,
2021, hMps://youtu.be/2xoNsusfOyE?si=zMKt528CF27Ev3-1.
23 Ravi Khadka, Belfrit Batlajery, Amir Saeidi, et al., “How Do Professionals Perceive Legacy Systems and So@ware
Moderniza'on?” ACM Proceedings of the 36th Interna0onal Conference on SoRware Engineering, 2014, pp. 36–47.
doi: 10.1145/2568225.2568318.

Security by Design Paper Series www.lawfaremedia.org

 5

Unfortunately, the maturity of our legacy technology is not yielding be0er security. Detailed
reviews of mature open source soWware like the Linux operaBng system distribuBon Debian, the
programming language PHP, and the Java developer plaoorm OpenJDK have found that security
does not improve over Bme and more generally that “we have not reached the point of curbing
the vulnerability rate.”24 The new Rust programming language makes memory safety possible in
far more technologies, prevenBng most security vulnerabiliBes from being created in the first
place.

At the same Bme, Rust is open source, challenged with supply chain risks and complexiBes
common to all community-supported soWware. Moreover, programming languages like Rust are
a subset of open source, and other open source projects like the operaBng system Linux are
implemented using those languages. This circular dependency requires analysis that considers
both Rust-specific issues and more general issues relaBng to open source soWware that impact
Rust. One of those challenges is the growing tension between China and the United States.

While U.S. policymakers have restricted China’s access to advanced hardware25 and passed a
law demanding that the Chinese company ByteDance sell TikTok or stop operaBng the mobile
app in the United States,26 almost all U.S. technology is built by teams composed of both China-
and U.S.-funded engineers. Some 96 percent of technology includes open source, and the
technologies that use open source are made up primarily of open source soWware. Detailed
scans across a wide variety of criBcal industries, such as health care, finance, and
transportaBon, found that 77 percent of the soWware’s code originates from open source, and
open source is as Chinese as it is American.27

China protects its soWware supply chain from poliBcal intervenBon28 and malicious interference
(like the recent XZ UBls a0ack)29 by providing a government-funded, quality-controlled copy of
open source for Chinese corporaBons and developers.30 Open source projects like Rust have

24 Nikolaos Alexopoulos, Sheikh Mahbub Habib, Steffen Schulz, and Max Mühlhaüser, “The Tip of the Iceberg: On
the Merits of Finding Security Bugs,” ACM Transac0ons on Privacy and Security 24, no. 1 (2021): 1–33. doi:
10.1145/3426975.
25 Josh Boak, “The Commerce Department Updates Its Policies to Stop China From Geyng Advanced Computer
Chips,” Associated Press, Oct. 17, 2023, hMps://apnews.com/ar'cle/computer-chips-export-china-biden-raimondo-
78225ba8d1609137e859f68a80f6e91e.
26 Bobby Allyn, “President Biden Signs Law to Ban TikTok Na'onwide Unless It Is Sold,” Na'onal Public Radio, April
24, 2004, hMps://www.npr.org/2024/04/24/1246663779/biden-ban-'ktok-us.
27 Fred Bals, “2024 Open Source Security and Risk Analysis Report,” Synopsys, Feb. 27, 2024,
hMps://www.synopsys.com/blogs/so@ware-security/open source-trends-ossra-report.html.
28 Rita Liao, “China Is Building a GitHub Alterna've Called Gitee,” TechCrunch, Aug. 21, 2020,
hMps://techcrunch.com/2020/08/21/china-is-building-its-github-alterna've-gitee/.
29 Kevin Roose, “Did One Guy Just Stop a Huge CyberaMack?” New York Times, April 3, 2024,
hMps://www.ny'mes.com/2024/04/03/technology/prevent-cyberaMack-linux.html.
30 Coco Feng, “Gitee, China’s Answer to GitHub, to Review All Code by Temporarily Closing Open source Projects to
the Public,” South China Morning Post, May 19, 2022, hMps://www.scmp.com/tech/big-tech/ar'cle/3178323/gitee-
chinas-answer-github-review-all-code-temporarily-closing-open.

Shane Miller, “Investing in Rust” JULY 2024

 6

become a global public good worth nearly $9 trillion,31 and U.S. public policy can have historic
economic security impact by addressing risks to important open source work like memory-safe
languages that are foundaBonal to the resilience of criBcal infrastructure as well as the market
hurdles that stall adopBon of emerging soluBons like Rust.

What is needed now is a jump-start. This paper outlines a policy proposal that provides for

• an addiBon to the criBcal infrastructure informaBon technology sector,
• a cloud compuBng tax to fund criBcal U.S. cyber defense,
• U.S.-sponsored governance for emerging cybersecurity soluBons like Rust, and
• a U.S.-sponsored open source library verificaBon service.

Secure-by-design must include memory-safe-by-default, and memory-safe-by-default needs
secure and accessible memory-safe programming languages. Public policy must extend beyond
driving adopBon of memory-safe languages to supporBng the security and stability of them.
Before elaboraBng on these policy objecBves in greater detail, this paper provides a more
detailed explanaBon of memory-safe languages and, parBcularly, the significant improvements
arising from the use of the Rust language.

RUST LOWERS THE TOTAL COST OF SOFTWARE OWNERSHIP

Memory-safe languages reduce the effort required for opera=ons, freeing engineers to focus
on building a new version or feature for their product. Modern soWware development is an
iteraBve process in which product launch is not the end of the effort but the beginning of
operaBons roles and responsibiliBes for the engineering team.

AWer a product launch, engineering resources cannot focus exclusively on building new features
because a0enBon and capacity must be split between building the next thing and operaBng the
exisBng one. OperaBng costs have a huge impact on the team’s ability to stay agile and
compeBBve. OperaBonal tasks like on-call rotaBons32 and fixing subopBmal soWware33 can
adversely impact team morale and performance in all areas if they are not managed and
contained. Maintaining and evolving soWware includes engineering work for

• monitoring and reacBng to system operaBons,
• patching security vulnerabiliBes,
• fixing bugs, and
• adding new features to support evolving user needs.

31 Rachel Layne, “Open Source So@ware: The $9 Trillion Resource Companies Take for Granted,” Harvard Business
School Working Knowledge, March 22, 2024, hMps://hbswk.hbs.edu/item/open source-so@ware-the-nine-trillion-
resource-companies-take-for-granted.
32 Grace E. Vincent, Katya Kovac, Leigh Signal, et al., “What Factors Influence the Sleep of On-Call Workers?”
Behavioral Sleep Medicine 19, no. 2 (2021): 255–72. doi: 10.1080/15402002.2020.1733575.
33 Terese Besker, Hadi Ghanbari, Antonio Mar'ni, and Jan Bosch, “The Influence of Technical Debt on So@ware
Developer Morale,” Journal of Systems and SoRware 167 (2020). doi: 10.1016/j.jss.2020.110586.

Security by Design Paper Series www.lawfaremedia.org

 7

Rust’s newness and immaturity increase the iniBal Bme and cost of soWware development, but
its combinaBon of efficiency and memory safety decrease the substanBally larger cost of
maintenance and operaBons that consumes 60 to 70 percent of an engineering organizaBon’s
resources.34 The quality and security improvements baked into soWware built with memory-safe
programming languages have delivered 60 percent fewer memory-safety vulnerabiliBes,35 75
percent fewer bugs,36 and ten Bmes fewer failures37 for early memory-safety migraBons,
empowering soWware engineers to iterate and refactor more, keeping soWware and its
dependencies current throughout its lifeBme. Using a conservaBve assumpBon of a 50 percent
reducBon in effort for operaBons, security patching, and bug fixing, memory safety frees 30
percent (half of 60 percent) of an engineering team’s maintenance capacity. For a one-hundred-
person engineering organizaBon, that means memory-safe languages can nearly double the
number of engineers working on new features and products, from forty to seventy people.

Monitoring and Reac8ng to System Opera8ons

Before soWware is made available to customers, engineering teams create dashboards with
metrics that provide visibility into the operaBons of their soWware and set alarms that go off in
the event of failures. They create “on-call” rotaBons for first responders and runbooks with
protocols those operators will follow. SoWware errors require immediate a0enBon when they
impact customers, and engineering operaBons assume systems will fail. New users and
increased traffic interact with soWware in ways its authors did not predict, revealing latent bugs
and security vulnerabiliBes. The operaBonal controls the team sets up will idenBfy some of
those challenges, while manual reports like emails or customer service calls will catch others.
The engineering team will review reports as it receives them, classify them through a triage
process, and establish a plan to fix or miBgate them. In many cases, the team will change the
soWware with a fix to the original code, and in some cases, the team will also update its
operaBons tools and processes.

Amazon Prime Video observed huge reducBons in the frequency of those operaBonal errors
with their memory-safe migraBon. Amazon’s Prime Video team migrated from JavaScript to Rust
and WebAssembly for performance improvements. As part of that migraBon, the team also
replaced a porBon of unsafe C++ code with Rust. AdopBng memory-safe code significantly
improved service reliability. The crash rate for Amazon’s new Rust soRware is ten =mes

34 Andrea Bordin and Fabiane Barreto Vavassori Beniy, “So@ware Maintenance: What Do We Teach and What
Does the Industry Prac'ce?” XXXII Brazilian Symposium on SoRware Engineering, 2018. doi:
10.1145/3266237.3266251.
35 Jeffrey Vander Stoep, “Memory Safe Languages in Android 13,” Google Security, Dec. 1, 2022,
hMps://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html.
36 Adam Zabrocki and Alex Tereshkin, “Exploita'on in the Era of Formal Verifica'on,” YouTube, uploaded by
DEFCONConference, Oct. 20, 2022, hMps://youtu.be/TcIaZ9LW1WE?si=21o29TQtPp9Uo75n.
37 Alexandru Ene, “Op'mizing Prime Video With WebAssembly and Rust,” YouTube, uploaded by Interna'onal
JavaScript Conference, Sept. 20, 2022, hMps://youtu.be/erdHTxghyM0?si=2tRL_7u8EbjNW7KO.

Shane Miller, “Investing in Rust” JULY 2024

 8

smaller than for their C++ systems.38 The Prime Video Rust and C++ services are authored and
operated by the same team of engineers, the code bases are relaBvely similar in size, and
they’re following industry best pracBces for prevenBng, detecBng, and correcBng memory
errors in their C++ code, providing a useful baseline for comparison. Reducing crashes by ten
Bmes reduces the number of alarms Amazon’s systems sound, the number of Bmes the
engineering team must triage a crash, and the number of fixes the team must apply to its
soWware. That substanBally lowers the cost of operaBons, creates a be0er experience for users,
and gives the team more capacity to build profitable new features.

Patching Security Vulnerabili8es

Some of the most urgent and important soWware errors will be exploitable vulnerabiliBes. The
operaBonal savings that companies like Amazon reap from safe programming languages come
as a wonderful side effect of the memory safety baked into those languages to ensure
correctness. Memory-safe languages are the most effecBve and cost-efficient protecBon from
malicious acBvity because most security vulnerabiliBes are errors that are not possible with
memory-safe programming languages. Despite a surge in security and developer tools,
educaBon, and process investments over the past couple of decades, open source soWware
security research suggests that “we have not yet achieved an adequate degree of rigorousness
in our development and security processes … [because] the number of [security] vulnerabiliBes
[in soWware] does not visibly decrease over Bme, even for soWware that has been stable for
many years.”39

Researchers find that soWware vulnerabiliBes idenBfied in new releases are not overwhelmingly
new but oWen residual bugs present in previous releases and idenBfied only as the result of
fresh security examinaBons triggered by a new release. Each vulnerability goes through an
operaBons engineering team process. It is reported and triaged, before a fix to some code is
implemented, tested, and deployed. Some users update their soWware and receive that fix,
while others conBnue to operate exploitable versions. Implemen=ng soRware with memory-
safe languages prevents most security vulnerabili=es from ever being created. Instead of
spending valuable engineering Bme finding and fixing these security vulnerabiliBes in
producBon, where they are most expensive, memory-safe soWware is secure by design.

The Google Android team has been taking advantage of those benefits, because their team
found that memory errors by developers in C and C++ code disproporBonately accounted for
their most dangerous security vulnerabiliBes. In 2022, lack of memory safety accounted for 86
percent of criBcal severity vulnerabiliBes and 89 percent of remotely exploitable vulnerabiliBes.
Over the past several years, 78 percent of confirmed exploited vulnerabiliBes on Android
devices were memory bugs.40

38 Ibid.
39 Alexopoulos et al., supra note 24.
40 Vander Stoep, supra note 35.

Security by Design Paper Series www.lawfaremedia.org

 9

The Google Android team is transiBoning to memory-safe programming languages like Java,
Kotlin, and Rust, and more than half of the new code in Android version 13 was wri0en with
those safe languages. The result of the transiBon has been consistent drops in memory-safety
vulnerabiliBes as well as the severity of vulnerabiliBes sBll reported, with vulnerabiliBes reduced
more than 60 percent over the past four years (see Figure 1). That’s 60 percent fewer security
fire drills for the Google Android team, because they started using memory-safe programming
languages by default. That saves the Google Android team substanBal money and Bme that they
can invest in building new features (like upgraded camera and media opBons) for their product.

Figure 1. Google Android memory-safety vulnerabiliBes.

Fixing Bugs

The Rust compiler prevents soRware engineers from unknowingly producing code with
memory-safety bugs, and that improves both the security and the resilience of the soRware
Rust is used to build. Fixing bugs earlier in the development life cycle is also substanBally
cheaper because resources and processes accumulate as soWware moves through the
development life cycle, slowing down changes and exponenBally increasing their cost. Figure 2
shows the theoreBcal increased costs of bug fixes over Bme.41 Memory safety enforces
correctness at compile Bme, lowering the cost of maintaining soWware by keeping memory bugs
out of producBon at all. Companies like Nvidia, Amazon, and Google have seen that impact to
operaBons in their migraBons to memory-safe languages.

41 Penny Grubb and Armstrong A. Takang, SoRware Maintenance: Concepts and Prac0ce, 2nd ed. (World Scien'fic
Publishing, 2003), 26.

Shane Miller, “Investing in Rust” JULY 2024

 10

Figure 2. Cost of fixing bugs over the soWware development life cycle.

Fixing bugs and security vulnerabiliBes is necessary correcBve maintenance, and someBmes
engineers introduce new, unintended problems called “regressions” when implemenBng them.
There is a nontrivial likelihood that a well-intenBoned code fix will have an adverse impact
because of the complexity of modern systems and lack of insBtuBonal knowledge due to high
engineering turnover.42 Memory safety prevents engineers from introducing new memory bugs,
which decreases the frequency of regressions and lowers the cost of bug fixes.

The Nvidia Offense Security Research team compared code bugs in their soluBons built with
unsafe (C/C++) and memory-safe (SPARK) programming languages. They did side-by-side
comparisons of safe and unsafe for root of trust and resource management, operaBng systems,
and boot control. Nvidia found 71–78 percent fewer bugs in memory-safe implementa=ons of
their memory-unsafe soRware, and on average, 54 percent of the bugs idenBfied in the unsafe
code were memory-safety bugs.43 Using a memory-safe programming language dramaBcally
decreased the number of bugs in their soWware, delivering a similarly dramaBc decrease in the
cost of operaBng that soWware.

Adding New Features to Support Evolving User Needs

Finally, modifying Rust is less risky than memory-unsafe languages, generaBng tremendous
savings over its lifeBme. Billions of lines of code in producBon today were wri0en decades
ago,44 and the developers operaBng and maintaining those applicaBons are not their original
authors. The technology industry has one of the highest employee turnover rates at 12.9
percent, which is more than 20 percent higher than the average for all industries.45 For a ten-
person engineering team, that means that half the team building a new soWware soluBon will
be gone within four years, and none of the original authors will sBll be working on the

42 Greg Lewis and Joseph Soroñgon, “Industries With the Highest (and Lowest) Turnover Rates,” LinkedIn Talent
Blog, Aug. 11, 2022, hMps://www.linkedin.com/business/talent/blog/talent-strategy/industries-with-the-highest-
turnover-rates.
43 Zabrocki and Tereshkin, supra note 36.
44 Owen Hughes, “This Old Programming Language Is Much More Important Than You Might Expect. Here’s Why,”
ZDNet, Feb. 9, 2022, hMps://www.zdnet.com/ar'cle/programming-languages-how-much-cobol-code-is-out-there-
the-answer-might-surprise-you/.
45 Lewis and Soroñgon, supra note 42.

Security by Design Paper Series www.lawfaremedia.org

 11

applicaBon in eight years. As a result, the engineers maintaining soWware frequently do not
have a deep understanding of how the soWware was designed, and they will approach the
discovery process for understanding the behavior of the code differently.

The safety net provided by a memory-safe language makes engineering teams more agile,
because code changes are less risky. While the Rust compiler’s strict adherence to correctness
might have slowed the iniBal development of soWware, the engineers tackling maintenance of
that system will reap its benefits. The compiler will not overlook memory errors, and the
engineers’ experimentaBon will yield feedback at compile Bme rather than later during runBme
tesBng. That feedback loop is faster and less expensive, improving the producBvity of engineers
maintaining and operaBng soWware wri0en in Rust.

Rust is also the easiest programming language to sight-read. Engineers reading new code are
like musicians reading unfamiliar sheet music. There are always recognizable elements, but the
theme, pace, and key may be outside of the player’s experience. In soWware, those unfamiliar
elements can take a developer through a complicated maze of dependencies and logic trees,
and Rust makes the trail of logic in a program easier to follow. Researchers have concluded that
Rust has a significantly lower cogniBve complexity than C, C++, Python, JavaScript, and
TypeScript (all languages studied), “meaning that [Rust] can guarantee the highest
understandability of source code compared to all others.”46 As a result, soWware maintainers
can understand unfamiliar Rust code far more quickly than code wri0en in many other popular
languages.

The improved understandability of Rust as well as the reduced risk of regression make new
features less expensive and disrupBve for an engineering team. Many legacy systems are stuck
in Bme because of lost opportuniBes to make noncriBcal improvements. Features, fixes, and
upgrades are oWen low impact individually, and for complex systems wri0en in memory-unsafe
programming languages, they are not worth the risk of regressions that can introduce new,
invisible security vulnerabiliBes. Using a memory-safe language reduces the cost of lost
opportuniBes for improvements to soWware over its lifeBme.

TAKEAWAYS FOR POLICYMAKERS

The Rust programming language fills a substanBal gap in memory-safe language soluBons,
making memory safety possible in far more domains. In addiBon to improving cybersecurity for
technology manufacturers, memory safety lowers the total cost of maintaining soWware over its
lifeBme, delivering real value to both consumers and producers. Despite those advantages, Rust
may always be a niche soluBon on the bleeding edge of tech because of the lock-in memory-
unsafe languages have achieved and the market fricBon inherent in Rust’s design and support.
That lock-in means that malicious actors will conBnue to exploit vulnerabiliBes that would be
prevented with memory safety—vulnerabiliBes like buffer overflows, use-aWer-free, and out-of-

46 Luca Ardito, Luca Barbato, Riccardo Coppola, and Michele Valsesia, “Evalua'on of Rust Code Verbosity,
Understandability and Complexity,” PeerJ Computer Science 7 (2021). doi: 10.7717/peerj-cs.406.

Shane Miller, “Investing in Rust” JULY 2024

 12

bounds reads and writes that enable threats like the 1988 Morris worm, the 2016 Heartbleed
bug, the 2016 Trident a0ack, and the 2017 WannaCry a0ack.

For many resource-constrained technologies, like mobile phones and the networks that connect
them, Rust is the only viable memory-safe language available today, but Rust’s immaturity
introduces new risks for technology manufacturers. Rust has (a) limits to the scope of its
memory safety, (b) missing audits and alerts for code that has disabled memory safety,47 (c)
missing standard security tools for memory-unsafe Rust code,48 and (d) an unusually large
number of third-party dependencies.49 It is not true that all Rust code is memory safe, and we
have a lot more work to do before it is.

Like most popular programming languages, Rust is not a single product. The Rust programming
language is a collecBon of open source projects built and maintained by thousands of people
over more than a decade, and like all open source soRware, Rust is available “as is” with no
warranty. There is no authority responsible for the memory-safety claims of Rust nor liable for
its failures. That is true for all open source soWware, and some of the challenges with Rust’s
stability and maturity are common across open source projects.

Today, open source delivers foundaBonal code for almost every technology, as community
freeware has penetrated every domain. Aerospace, automoBve, mobile phones, “internet of
things,” e-commerce, arBficial intelligence, health care, virtual reality—they are all open
source.50 Open source projects are like Lego building blocks, and engineers create consumer
technology by puxng these blocks together in different ways to create unique soluBons. With
few excepBons, open source soWware is not owned or maintained by any single legal enBty.
Open source offers no maintenance contract nor responsible authority. Nothing is guaranteed
nor warranBed.

Public policy can have historic economic impact by addressing risks to criBcal open source
projects like memory-safe languages as well as the market hurdles that stall adopBon of new
security soluBons like Rust. This paper recommends

• an addiBon to the criBcal infrastructure informaBon technology sector,
• a cloud compuBng tax to fund criBcal U.S. cyber defense,
• U.S.-sponsored governance for emerging cybersecurity soluBons like Rust, and
• a U.S.-sponsored open source library verificaBon service.

47 Steve Klabnik and Carol Nichols, “Unsafe Rust,” The Rust Programming Language, hMps://doc.rust-
lang.org/book/ch19-01-unsafe-rust.html.
48 Joe Sible and David Svoboda, “Rust So@ware Security: A Current State Assessment,” Carnegie Mellon University
So@ware Engineering Ins'tute, Dec. 12, 2022, hMps://insights.sei.cmu.edu/blog/rust-so@ware-security-a-current-
state-assessment/.
49 Sergio De Simone, “Sta'c Analyzer Rudra Found Over 200 Memory Safety Issues in Rust Crates,” InfoQ, Nov. 13,
2021, hMps://www.infoq.com/news/2021/11/rudra-rust-safety/.
50 Bals, supra note 27.

Security by Design Paper Series www.lawfaremedia.org

 13

Addi7on to the Cri7cal Infrastructure Informa7on Technology Sector

Programming languages and hardware (physical machines) are the roots of all technology, and
the design, implementaBon, and management of programming languages is done largely by
anonymous open source community volunteers all over the world. We are connected across
geographies, poli=cs, and socioeconomic boundaries not just by the technologies we use but
also in the collabora=ve crea=on of those technologies, and policymakers should incorporate
an understanding of those relaBonships into both foreign and domesBc policy.

If you look closely at the long agreements that come with the technology you’re using today,
you’ll see names of open source engineers like Daniel Stenberg where a company’s ought to be.
Daniel’s name and soWware project (curl) are listed in the copyright for everything from Grand
TheS Auto to SpoBfy to Volkswagen minivans.51 Moreover, Daniel’s work depends on Sean
McArthur’s, and Sean McArthur’s work depends on Vadim Petrochenkov’s, and so on—a global
web of descendants of the early internet trailblazers.

That global community is supported by companies and governments all over the world,
including substanBal investment from China. In fact, the Chinese company Huawei holds more
than 450 key posiBons within 800 standards organizaBons, industry alliances, open source
communiBes, and academic associaBons,52 including board seats on open source foundaBons
like Linux FoundaBon, Rust FoundaBon, and OpenSSF. The Chinese company ByteDance holds a
board seat at the Apache SoWware FoundaBon, and both ByteDance and Kuaishou Group are
members of the Open InvenBon Network, the largest patent non-aggression consorBum
worldwide. Futurewei, the U.S.-based research and development subsidiary of Huawei, directly
employs roughly half of the full-Bme paid maintainers of the Rust project. U.S. restricBons on
China’s access to advanced hardware53 are inconsistent with our significant dependence on
Chinese funding for open source projects like the Rust programming language.

Early Rust adopBon is focused on security-sensiBve domains like mission criBcal systems,
infrastructure services, and operaBng systems, while the Rust toolchain and ecosystem have
significant security vulnerabiliBes with high likelihood of a0ack and high severity impact that
the community is working to address.54 That community is an internaBonal partnership with the
most substanBal contribuBons of Bme, talent, and money coming from both the United States
and China, and that is challenging to navigate in the current poliBcal climate. To be sure, the
way forward must be cognizant of ongoing strategic adversarial imperaBves, but at the same
Bme, technical collaboraBons with Chinese organizaBons can be meaningful. The U.S.

51 Daniel Stenberg, “ScreenshoMed Curl Credits,” Daniel Stenberg blog, Oct. 3, 2016,
hMps://daniel.haxx.se/blog/2016/10/03/screenshoMed-curl-credits/.
52 “Openness, Collabora'on, and Shared Success,” Huawei, hMps://www.huawei.com/en/corporate-
informa'on/openness-collabora'on-and-shared-success.
53 Boak, supra note 25.
54 Rust Founda'on, “Security Ini'a've Report,” Feb. 15, 2024, hMps://founda'on.rust-
lang.org/sta'c/publica'ons/security-ini'a've-report-february-2024.pdf.

Shane Miller, “Investing in Rust” JULY 2024

 14

government must take responsibility for managing the inherent risks, so that these open, global
communiBes can conBnue to focus on pioneering technology advancements.

U.S. government agencies prevent, deter, and miBgate risks to sectors idenBfied by the
Cybersecurity and Infrastructure Security Agency (CISA) as “criBcal infrastructure.” The
informaBon technology (IT) sector is one of the sixteen criBcal infrastructure sectors managed
by the U.S. government today,55 and CISA’s IT sector protecBon plan covers six criBcal funcBons.
These include core funcBons like the Domain Name System (DNS), internet rouBng
infrastructure, and communicaBon services. Programming languages are also a technology vital
to our naBonal economic security, and they should be added as the seventh criBcal funcBon of
the IT sector. The IT sector protecBon plan for programming language risks should include
mechanisms to idenBfy the most criBcal languages, conBnuously evaluate the security and
stability of those languages, provide regular public reports on weaknesses idenBfied and
miBgated, and respond to vulnerability reports and support requests from language stewards
like the Rust FoundaBon.

Cloud Compu7ng Tax for U.S. Cyber Defense

Today’s technology stands on a foundaBon of public goods created by passionate volunteers,
and our global security depends not on “the industry” as some security leaders have asserted,
but on the quality, stability, and security of the open source building blocks the tech industry
uses. The U.S. government must take real responsibility for defending the American public from
the outsized risks of sharing criBcal public goods that are the foundaBon of our economic
infrastructure, with state actors whose “mulB-pronged assault on our naBonal and economic
security” they believe to be “the defining threat of our generaBon.”56 Congress and the
president cannot delegate the consumer safety of public goods to private insBtuBons like big
tech, but they can demand that big tech, as the primary beneficiary of open source soWware, be
held accountable for funding the security of that work without which their own products would
cost 3.5 Bmes more to build.57

In 1956, Congress passed the Interstate and Defense Highways Act, creaBng a fund that uses
fuel taxes to pay for criBcal American roads and bridges, and today, our naBonal economy
demands an equally bold investment in our digital networks. Following the Interstate Act’s
model that uses a consumpBon tax to pay for the interstate infrastructure on which consumers
depend, Congress should act quickly to pass an Internet Defense Act that creates a federal cloud
compuBng tax to fund a new Open Source Trust and increase funding for exisBng naBonal

55 U.S. Cybersecurity and Infrastructure Security Agency, “Cri'cal Infrastructure Sectors,”
hMps://www.cisa.gov/topics/cri'cal-infrastructure-security-and-resilience/cri'cal-infrastructure-sectors.
56 U.S. Federal Bureau of Inves'ga'on, “Director Wray’s Opening Statement to the House Select CommiMee on the
Strategic Compe''on Between the United States and the Chinese Communist Party,” Jan. 31, 2024,
hMps://www.|i.gov/news/speeches/director-wrays-opening-statement-to-the-house-select-commiMee-on-the-
chinese-communist-party.
57 Manuel Hoffman, Frank Nagle, and Yanuo Zhou, “The Value of Open Source So@ware,” Harvard Business School
Working Paper No. 24-038, January 2024, hMps://www.hbs.edu/faculty/Pages/download.aspx?name=24-038.pdf.

Security by Design Paper Series www.lawfaremedia.org

 15

security organizaBons and partners like the NaBonal InsBtute of Standards and Technology
(NIST), CISA, and the Carnegie Mellon University SoWware Engineering InsBtute (CMU SEI).

While twenty-four states currently tax the sales of soWware-as-a-service (SaaS),58 there is no
state or federal sales tax on infrastructure-as-a-service (IaaS). That means that when Meta pays
Amazon Web Services for cloud compute services like Amazon EC2, no sales tax is due. At the
same Bme, researchers esBmate that the cost of creaBng technologies like Amazon EC2 without
open source soWware would be 3.5 Bmes higher than it is today.59 Introducing a cloud sales tax
to fund improvements to the security and stability of open source soWware used to build the
cloud makes cloud compuBng more secure and improves the security and stability of open
source for all technology. A cloud compuBng tax is long overdue, and it must be collected to
secure the soWware supply chain for American consumers.

The Interstate and Defense Highways Act introduced a federal fuel tax that was 18.4 cents per
gallon in 2023,60 while the average price of gasoline was $3.634 per gallon,61 making the
effecBve gasoline tax a li0le more than 5 percent. The biggest (American) cloud providers
generated $270 billion in revenue that year,62 and a comparable federal cloud compuBng tax of
5 percent would have produced $13.5 billion for cybersecurity in 2023 alone. That is the order
of magnitude that is both possible and required to protect America’s criBcal infrastructure.

A cloud sales tax would put the cost of securing open source for U.S. economic stability on the
companies that have profited the most from open source soWware—its biggest consumers. The
Open Source Trust can offer financial support to open source communiBes, allow for more free-
flowing exploraBon of our technology fronBer, and close a gaping hole in America’s economic
stability. In the White House’s own words, “Government’s role is to protect its own systems
[and] to ensure private enBBes, parBcularly criBcal infrastructure, are protecBng their
systems[.]”63 Technology companies rely on open source as a public good, and policymakers
owe it to American consumers to ensure the security and resilience of that public good.

U.S. Governance for Emerging Cybersecurity Solu7ons

We cannot make memory-safe languages an industry standard without mainstream adopBon,
and today, Rust is the most prominent memory-safe language for performance sensiBve

58 “Introduc'on to SaaS taxability in the US,” Stripe, hMps://stripe.com/guides/introduc'on-to-saas-taxability-in-
the-us.
59 Hoffman, et al., supra note 57.
60 U.S. Department of Transporta'on, “When Did the Federal Government Begin Collec'ng the Gas Tax?” Highway
History, hMps://www.}wa.dot.gov/infrastructure/gastax.cfm.
61 U.S. Energy Informa'on Administra'on, “U.S. All Grades All Formula'ons Retail Gasoline Prices (Dollars per
Gallon),” Petroleum & Other Liquids,
hMps://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&s=emm_epm0_pte_nus_dpg&f=m.
62 Mark Haranas, “Cloud Market-Share Q4 2023 Results: AWS Falls as Microso@ Grows,” CRN, Feb. 2, 2024,
hMps://www.crn.com/news/cloud/2024/cloud-market-share-q4-2023-results-aws-falls-as-microso@-grows.
63 The White House, Na0onal Cybersecurity Strategy, supra note 8.

Shane Miller, “Investing in Rust” JULY 2024

 16

domains. At the same Bme, Rust has big, open challenges that require strong product,
engineering, and program leadership, but Rust’s decentralized governance and individualized
prioriBes prevent the community from organizing the big improvements needed to break into
the mainstream market. Rust must leap across the market chasm pictured in Figure 3 to
transiBon from innovators and visionaries on the leading edge of technology to pragmaBsts in
the mainstream market. PragmaBsts, or the early majority, are not adventurous founders and
innovators. These are the folks that commit and stay the course, and their goal is to make
“incremental, measurable, predictable progress.”64 Market pragmaBsts invest in proven
technologies offered at reduced prices, and they are the gateway to the enBre mainstream
market. New technologies remain niche soluBons used by a few tech enthusiasts unBl they are
accepted and adopted by market pragmaBsts.

Figure 3. Breaking into the mainstream market.

Rust was built by more than nine thousand volunteers. While many successful open source
projects (e.g., Linux) have leaders with decision-making authority, other open source
communiBes like Rust have no comparable leadership. The fluid development and
organizaBonal slack permi0ed by Rust sponsors and employers incubates innovaBon that’s not
possible in more structured organizaBons,65 but that same lack of governance inhibits the
community’s ability to deliver results efficiently and effecBvely. As a result, large iniBaBves that
require more than a couple of people to collaborate and commit are not achievable, and
external governance intervenBon will be necessary to close the gaps in Rust for mainstream
users.

Taking Rust across the chasm from early adopters to the mainstream market requires (a)
credible tesBmonies on the costs and returns of Rust investments and (b) reducBons in costs
and risks of using Rust without losing benefits. The mainstream market relies on success stories
from trusted references. It seeks evidence that new technologies can succeed, and too many
early adopters of Rust are keeping the details of their migraBons private. The mainstream
market is not interested in whether Amazon, Google, MicrosoW, and Meta are using Rust—

64 Geoffrey A. Moore, Crossing the Chasm, 3rd ed. (HarperCollins, 2014), 55.
65 Rogers, supra note 19, p. 412.

Security by Design Paper Series www.lawfaremedia.org

 17

mainstream market leaders and engineers want to know how much those companies are paying
to adopt Rust and what the return on that investment has been. There are private anecdotes of
Rust code outperforming legacy C applicaBons because engineers felt more confident
opBmizing Rust. There are also private buyer-beware tales of Rust engineering teams blocked
on performance regressions for days because the tools available to inspect Rust performance
issues are inadequate.

Programs that create acBonable guidance and referenceable case studies for memory-safety
adopBon have a big effect, and incenBvizing early adopters to share their Rust migraBon
successes and challenges publicly would materially influence memory-safety adopBon.
Technology companies announcing a few million dollars’ investment in their internal projects,
maintainer sponsorships, or foundaBon donaBons have li0le impact beyond the direct
recipients of those funds. Widespread memory-safety adop=on requires credible
observability.

In December 2023, CISA, the NaBonal Security Agency, and the FBI partnered with similar
agencies from four other countries to author “The Case for Memory Safe Roadmaps” that
“urge[s] soWware manufacturers to create and publish memory safe roadmaps that detail how
they will eliminate memory safety vulnerabiliBes in their products.”66 Publishing documents that
arBculate a plan for Rust migraBon as part of a memory-safety roadmap would substanBally
improve the observability of exisBng Rust adopBon and spur near peers to begin their own
planning, but this is a giant first step. There are incremental successes that could make the
larger effort of a roadmap more achievable while delivering earlier observability.

The roadmap guidance developed by U.S. government agencies and internaBonal partners
offers very few insights to technology manufacturers interested in pursuing a memory-safety
roadmap, and the suggesBons provided are ambiguous and expensive. The roadmap guidance
for prioriBzaBon includes advice like “start with new and smaller projects” and “prioriBze
security criBcal code,” and guidance for planning advises steps like “ensure teams have access to
training” and “create a staffing pipeline.” A public-private partnership effort to build an
acBonable cookbook for memory-safety migraBon would be a be0er first step than urging
technology manufacturers to use the one available today.

CISA should partner with early Rust adopters to idenBfy their insights, costs, and wins and
visibly incorporate that data into the roadmap guidance. The guidance from that exercise would
reduce complexity, increase perceived relaBve advantage, and improve confidence across the
industry. The objecBves of this guidebook would be to (a) describe clearly and unambiguously
how to approach a migraBon, (b) establish realisBc expectaBons for upfront costs and risks, (c)
idenBfy organizaBons, iniBaBves, and alliances available for support, and (d) provide a calculator
for the long-term cost savings that technology manufacturers can expect aWer their migraBon to
memory safety. CISA should lead an iniBaBve to create this cookbook for memory-safety

66 U.S. Cybersecurity and Infrastructure Security Agency, “The Case for Memory Safe Roadmaps,” Dec. 6, 2023,
hMps://www.cisa.gov/resources-tools/resources/case-memory-safe-roadmaps.

Shane Miller, “Investing in Rust” JULY 2024

 18

migraBon starBng with Rust, where there is li0le insBtuBonal knowledge available today, and
this work should be funded by the Open Source Trust.

A deep dive into memory-safety migraBons will also make the limitaBons and risks of memory-
safe languages like Rust clear to CISA, giving them the data to lead more effecBve governance of
criBcal tools that CISA believes can address a large class of cybersecurity vulnerabiliBes. For
example, the Rust compiler, which enforces Rust’s safety guarantees, has limitaBons that have
an outsized impact on the effecBveness of migraBons, where there is likely to always be some
residual memory-unsafe code in a system. The Rust compiler checks the memory safety of an
engineer’s code before transforming it into an executable program, but when Rust code is
interfacing with unsafe code in languages like C and C++, the compiler does not have enough
informaBon to classify behavior as memory safe. Rust includes a special keyword (“unsafe”) that
an engineer can use to tag these kinds of implementaBons, and the Rust compiler will skip
memory-safety validaBons on the tagged code.

Since this is comparable to taking the memory-safety properBes out of Rust, soWware engineers
are expected to limit the use of “unsafe Rust” to the smallest possible scope. However,
anecdotal reports of faster soWware performance with “unsafe Rust” have incenBvized using it
more widely and introduced addiBonal risk. Some Rust libraries use “unsafe Rust” more broadly
than necessary, reducing the memory safety of their Rust code. “Unsafe Rust” is unavoidable
today, but engineers need educaBon and tools to know when to use it and how to miBgate the
risks “unsafe Rust” introduces.

As a result of the gaps in Rust’s memory-safety and analysis tools, Carnegie Mellon University
SoWware Engineering InsBtute researchers “categorize Rust as a safer language, rather than a
safe language, because the safety Rust provides is limited.”67 More mature memory-safe and
memory-unsafe languages are evaluated for cybersecurity vulnerabiliBes by soWware engineers
using staBc and dynamic analysis tools, and there are only experimental, proof-of-concept
analysis tools available for Rust today.68 CMU SEI should receive Open Source Trust funding to
conBnue their research and development and (a) reduce the limitaBons of the Rust compiler, (b)
audit the Rust compiler’s correctness in assessing the memory safety of Rust code, and (c)
develop both staBc and dynamic analysis tools for safe and unsafe Rust.

Rust is also suscepBble to open source security risks. Two years ago, the author of the social
media post shown in Figure 4 described taking control of a popular JavaScript library used by
more than thirty-six thousand soWware programs to illustrate a common open source security
threat that leaves most programming languages vulnerable.69 Threat models for build tools,
package managers, and compilers are similar across languages, and the tech industry is long

67 Sible and Svoboda, supra note 48.
68 Garret Wassermann and David Svoboda, “Rust Vulnerability Analysis and Maturity Challenges,” Carnegie Mellon
University So@ware Engineering Ins'tute, Jan. 23, 2023, hMps://insights.sei.cmu.edu/blog/rust-vulnerability-
analysis-and-maturity-challenges/.
69 Florian Roth [@cyb3rops], “Pwn the world mastodon.social/@lrvick/108274,” TwiMer, May 10, 2022,
hMps://twiMer.com/cyb3rops/status/1523979837769142273.

Security by Design Paper Series www.lawfaremedia.org

 19

overdue for a systemaBc approach to miBgaBng inherent weaknesses in their governance that
make threats like this common.

Figure 4. An illustraBon of open source security risks.

When this weakness was discussed on social media in 2022, thousands of language libraries
were controlled by expired domains, including more than one thousand Rust libraries (crates).
Individuals decide on a case-by-case basis whether to react to threats like domain expiraBons,
and they can implement miBgaBon measures without oversight or transparency, ignore the risk
these threats pose to the enBre industry, or take advantage of them for malicious purposes. A
trusted, publicly funded organizaBon must address the collecBve acBon challenge of
programming languages like Rust by establishing funded standards for popular and promising
memory-safe language toolchains.

CISA has partnered with the OpenSSF working group to outline cybersecurity assessment
dimensions for open source package managers.70 The principles and scoring system the team
has come up with are a good start, and minimum standards for those scores that protect
consumers is what needs to follow. CISA should receive addiBonal Open Source Trust funding to
support rapid, in-depth development of standards across package repositories, compilers, and
build tools, along with program management capabiliBes to collaborate with the stewards of
those tools, like the Rust FoundaBon, and to incenBvize the work needed to saBsfy CISA
standards.

U.S. Open source Library Verifica7on Service

Mobile devices, operaBng systems, and cloud infrastructure can prevent more than half of their
security vulnerabiliBes by migraBng to a memory-safe programming language, and early efforts
to make progress using Rust for those use cases have driven an incredible rate of growth in the
Rust ecosystem and maturity over the past five years. In 2019, there were just 400,000

70 Jack Cable and Zach Steindler, “Principles for Package Repository Security,” OpenSSF, February 2024,
hMps://repos.openssf.org/principles-for-package-repository-security.

Shane Miller, “Investing in Rust” JULY 2024

 20

engineers worldwide using Rust,71 and there were only three paid maintainers working on the
compiler and standard library. Everything else was accomplished by open source community
volunteers. Engineers who wanted to build with Rust were struggling to learn the language and
make it work for their needs. CriBcal pieces of the Rust ecosystem were so incomplete that they
were unusable in producBon systems, and there were no reliable esBmates of when that would
change. Only basic educaBonal resources were available, and very few experts offered
mentoring and coaching.

In the five years since then, the Rust developer community has exploded nearly 800 percent to
3.5 million engineers.72 The Rust FoundaBon was launched in 2020 and is supported by more
than forty different corporaBons, and there are at least thirty full-Bme paid maintainers and
staff working on the Rust compiler, package manager, and standard library. More recently,
AdaCore announced plans to offer a cerBfied and qualified Rust toolchain, contracts for service-
level agreements, and lifeBme support for backported fixes. There are also a dozen small
businesses all over the globe offering consulBng and training services for Rust development.
Rust has come a long way, but the tech industry is just taking its first steps on a mulB-decade
journey to memory-safe soWware everywhere.

There are sBll substanBal gaps in Rust that add cost, complexity, and risk to building with it, and
the mainstream market requires a whole product soluBon that’s easy to idenBfy and trust.
Mainstream companies will not dig through thousands of Bny Rust libraries to find what they
need. They don’t want to have to review hundreds of strangers’ code for “unsafe Rust” and
evaluate its quality and security. They don’t want to have to worry about the security and
stability of updates to the Rust libraries they use. Mainstream companies will invest in
technologies they trust to deliver. Programming languages with low risk and complexity can be
trusted by technology manufacturers, and that can be achieved only with safe, stable core
language tools and easy verificaBon of safe, supported language libraries.

Like most popular programming languages, Rust is a collecBon of open source projects built and
maintained by thousands of people over more than a decade, and like all open source soWware,
the Rust language and ecosystem are provided “as is,” with no warranty. Memory safety does
not absolve technology manufacturers’ responsibility to verify the security of third-party open
source dependencies, and the combinaBon of Rust’s uniquely small libraries and immature
implementaBons exacerbates that challenge. Rust basic tools (like h0p and serializaBon) are
spread across many more independent libraries than in more mature languages, and Rust
engineers typically require a few hundred of these libraries for a single soWware project.73 That’s
far more open source libraries and authors to evaluate and manage than the typical Python

71 Michael Carraz, et al., “State of the Developer Na'on, 17th Edi'on,” SlashData, Oct. 22, 2019,
hMps://www.developerna'on.net/resources/reports/state-of-the-developer-na'on-17th-q2-2019/.
72 Liam Dodd, et al., “State of the Developer Na'on, 25th Edi'on,” SlashData, Nov. 23, 2023,
hMps://www.developerna'on.net/resources/reports/state-of-the-developer-na'on-25th-edi'on-q3-20231/.
73 “Mo'va'on,” Cargo Vet, Mozilla, hMps://mozilla.github.io/cargo-vet/mo'va'on.html.

Security by Design Paper Series www.lawfaremedia.org

 21

program with only thirty-five dependencies.74 At the same Bme, fewer than 30 percent of the
most commonly used Rust libraries have a stable version with long-term (volunteer) support
available, and that raBo is growing by less than 2 percent annually. The addiBonal complexity of
the Rust language demands that engineers do far more exploraBon, validaBon, and verificaBon
than mature programming languages, and without a central, trusted authority, every technology
manufacturer must replicate that work.

While the Rust FoundaBon includes the enBre Rust ecosystem in its bylaws, the core Rust
project is the only community represented on its board of directors, and it is the primary
recipient of all funding. None of the authors or maintainers of the 145,000 Rust language
libraries is represented or supported, and no organizaBon offers a library verificaBon service.
Private companies have failed to produce a market soluBon for Rust language entropy and
immaturity, because the demand for Rust is not big enough to support it today. CorporaBons
offering soluBons for everything from open source analysis tools to package management
policies are waiBng for Rust to cross the chasm into the mainstream before extending their
exisBng products to support Rust. At the same Bme, like any open source soWware, Rust is
suscepBble to security and quality problems like malicious packages and negligence, and the
Rust FoundaBon’s security threat model gives high raBngs to both severity and likelihood of a
malicious library a0ack.75

An iniBal investment needs to be made to protect technology manufacturers adopBng Rust
now, even while it is not profitable for a corporaBon to do so, and the nonprofit Internet
Security Research Group (ISRG) has been working since 2020 to drive adopBon of memory
safety by making some progress in this area. While ISRG has successfully captured more than
ten sponsors for the work to sustain and improve memory-safe soWware, they have barely
scratched the surface of what needs to be done. At the same Bme, the adopBon of the work
completed by ISRG has been disappoinBng.

ISRG’s mulByear effort to transiBon curl, a prolific open source soluBon, to memory-safe h0p76
is sBll unused years aWer the opBon was made available, and the soWware’s maintainer will
likely remove support for memory safety due to the lack of interest from their users.77 A
nonprofit like ISRG must use Open Source Trust funds to create a complete library verificaBon
service that idenBfies, maintains, and hosts verified and validated memory-safe language
libraries that provide standard soWware soluBons (like encrypBon and serializaBon), and the U.S
government must leverage tools like NIST’s secure soWware standards and frameworks to
encourage adopBon of those memory-safe soluBons.

74 “Python Security Insights,” Snyk Report, September 2021, hMps://go.snyk.io/rs/677-THP-415/images/Python
Insight Report.pdf.
75 Rust Founda'on, supra note 54.
76 Josh Aas, “Memory Safe ‘curl’ for a More Secure Internet,” Internet Security Research Group, Oct. 9, 2020,
hMps://www.abeMerinternet.org/post/memory-safe-curl/.
77 Daniel Stenberg, “Hyper, Is It Worth It?”, curl, April 16, 2024, hMps://curl.se/mail/lib-2024-04/0021.html.

Shane Miller, “Investing in Rust” JULY 2024

 22

CLOUD ANALOGY—WE CAN DO IT

Changing fundamentals like soRware architectures or programming languages is expensive,
but it can be done and has been done before. Researchers esBmate the cost of the Y2K
remediaBon effort to have been between $300 and $600 billion,78 and cloud compuBng is
expected to increase 20.4 percent year over year to $678.8 billion in 2024.79 The transiBon to
cloud has been a massive migraBon effort for the technology industry.

To put the size of that migraBon in perspecBve, between 2010 and 2022, energy consumpBon
by cloud data centers increased 500 percent, while energy consumpBon by private data centers
decreased 75 percent.80 That’s the result of migraBng storage and compute from those legacy
data centers to the cloud driven by lower costs, shared responsibility, and greater flexibility
achieved by replacing legacy systems with modern implementaBons.

Cloud migraBon succeeded slowly at first, and early adopters were small and medium
businesses looking to lower the cost of entry into new markets and reduce business risks
associated with spikes in usage (like over- or underspending on infrastructure). Early adopters
like Neolix, Uber, and Airbnb didn’t have huge legacy systems that make cloud adopBon
expensive, so they were able to get into the cloud quickly and cheaply. Larger, older companies
followed because of the business agility those early cloud-based companies achieved, making
the cloud the gold standard for soWware operaBons. As recently as 2016, leaders at top cloud
companies were asking whether large enterprises like mulBnaBonal banks should or could
transiBon to the cloud, and by 2021, “more than 90 percent of banks [surveyed by the American
Bankers AssociaBon] stated that they maintain at least some data, applicaBons, or operaBons in
the cloud.”81

The cloud transiBon was boosted by large, early corporate investments in the U.S. government
as a customer. The first public cloud vendor, Amazon Web Services, launched a dedicated
government region in 2011,82 many years before there was enough government demand for
cloud compuBng to make that investment profitable. Cloud providers believed that having U.S.
government agencies trust their data and services to the cloud makes large enterprises
comfortable doing the same, and historically, that has been true. Financial insBtuBons, health

78 “Y2K”, Smithsonian, hMps://www.si.edu/spotlight/y2k.
79 Gartner, “Gartner Forecasts Worldwide Public Cloud End-User Spending to Reach $679 Billion in 2024,” Nov. 13,
2023,
hMps://www.gartner.com/en/newsroom/press-releases/11-13-2023-gartner-forecasts-worldwide-public-cloud-
end-user-spending-to-reach-679-billion-in-20240.
80 Interna'onal Energy Agency, “Global Data Centre Energy Demand by Data Centre Type, 2010-2022,” June 2,
2020, hMps://www.iea.org/data-and-sta's'cs/charts/global-data-centre-energy-demand-by-data-centre-type-
2010-2022.
81 U.S. Department of the Treasury, “The Financial Services Sector’s Adop'on of Cloud Services,” Feb. 8, 2023,
hMps://home.treasury.gov/system/files/136/Treasury-Cloud-Report.pdf.
82 Dave Levy, “10 Years of Government Cloud Innova'on With AWS GovCloud (US),” Amazon Web Services, Sept.
28, 2021, hMps://aws.amazon.com/blogs/publicsector/10-years-of-government-cloud-innova'on-aws-govcloud-
us/.

Security by Design Paper Series www.lawfaremedia.org

 23

care providers, and other criBcal infrastructure reference the U.S. government’s trust in cloud
compuBng security and reliability to saBsfy their own requirements for cloud adopBon. Cloud
migraBon is moving comfortably into the mainstream market this year, and Gartner predicts
that “by 2027, more than 70% of enterprises will use industry cloud plaoorms to accelerate
their business iniBaBves, up from less than 15% in 2023.”83 Investments like those made in
cloud compuBng could substanBally speed up the memory-safe transiBon in a similar way.

CONCLUSION

Today, many technology manufacturers approach soWware development with short-term tacBcs
and oWen end up with long-term ownership of subpar products. CorporaBons are underwriBng
unstable, fancy features with a line of credit, and customers are saddled with the security and
reliability consequences. In 2015, Gartner esBmated the total global IT debt from technology
manufacturers “taking shortcuts, using basic techniques, not considering long-term
consequences […], and delaying the upgrade of infrastructure” at $1 trillion, and Deloi0e
described that cost as an “accumulaBon of financial liabiliBes.”84 AdopBng a memory-safe-by-
default approach to soWware development would dramaBcally improve customers’ experience
and security, slow the accumulaBon of new technical debt, and lower the cost of ownership for
technology manufacturers for the decades they are likely to operate and maintain business-
criBcal soWware.85

Most modern programming languages are memory-safe, and they share a common memory-
safety design86 that boosts speed-to-market at the cost of slower and more resource expensive
soWware. For example, JavaScript’s combinaBon of consistency across web browsers and
support for dynamic features makes it the most widely used programming language, with 22.5
million acBve engineers (58 percent of all soWware engineers).87 Similarly, Python’s dynamic
typing and simplified abstracBons make it relaBvely easy to use and accessible to less tradiBonal
soWware engineers like data scienBsts and security specialists. As a result, Python is in third
place, with 16.9 million acBve developers (43 percent of all soWware engineers).88

The producBvity gains of legacy memory-safe languages have been a huge windfall for
cybersecurity, because they tap into the tech sector’s intense pressure to get new products to
market quickly. In an increasing returns market like technology, the first product to get ahead

83 Gartner, supra note 79.
84 Ranjan Sinha, Mohammed Arshad Hussain, Adib Ibrahim, et al., “Could the Cloud Be the Solu'on to Addressing
Technical Debt?” DeloiMe, 2019,
hMps://www2.deloiMe.com/content/dam/DeloiMe/xe/Documents/technology/me-consul'ng_technical-debt.pdf.
85 Phil Murphy, “New Jersey Needs COBOL Programmers,” YouTube, uploaded by Joseph Steinberg, April 4, 2020,
hMps://www.youtube.com/watch?v=HSVgHlSTPYQ.
86 Zixian Cai, Stephen M. Blackburn, Michael D. Bond, and Mar'n Maas, “Dis'lling the Real Cost of Produc'on
Garbage Collectors,” IEEE Interna0onal Symposium on Performance Analysis of Systems and SoRware, 2022, pp.
46–57. doi: 10.1109/ISPASS55109.2022.00005.
87 Dodd, supra note 72.
88 Ibid.

Shane Miller, “Investing in Rust” JULY 2024

 24

wins momentum that will move it further ahead. The technologies that can afford the addiBonal
overhead of those older, resource-expensive, memory-safe languages have leveraged them to
build new features faster. At the same Bme, resource-constrained technologies like phones,
automobiles, and networks have primarily stayed locked in to memory-unsafe languages that
deliver the performance and opBmizaBons those technologies require.

To fix this over-reliance on legacy memory-unsafe languages, several things are needed. The
current U.S. guidance on Chinese technical partnerships is contradictory and makes success
impossible for all stakeholders. The American tech community needs clear guidance and
governance of open collaboraBons with China. Government intervenBon is also required to
jump-start broad market adopBon of memory safety everywhere. The Internet Defense Act
must establish a cloud compuBng tax to fund improvements to observability, governance, and
complexity for emerging memory-safe languages like Rust through the Open Source Trust. Public
investments can reduce risks to memory-safety adopBon by providing:

• an addiBon to the criBcal infrastructure informaBon technology sector,
• a cloud compuBng tax to fund criBcal U.S. cyber defense,
• U.S.-sponsored governance for emerging cybersecurity soluBons like Rust, and
• a U.S.-sponsored open source library verificaBon service.

As CISA Director Jen Easterly said in her recent congressional tesBmony, “[C]ybersecurity is
naBonal security” and “cyber risk is business risk.”89 The cadence of cybera0acks is increasing,
and technology manufacturers that fail to adopt cybersecurity best pracBces like memory safety
are puxng their shareholders and customers at risk. Technology manufacturers must
proacBvely partner with U.S. government agencies to drive progress for our shared
responsibility to make all soWware memory-safe-by-default. Secure and stable memory-safe
programming languages can secure our criBcal infrastructure, protecBng everything from our
natural resources to our naBonal economy. InvesBng in Rust is good for the security of our
naBon, and it’s good for business.

89 “Select CommiMee Hearing on China’s Cyber Threat to the U.S.,” C-SPAN, clipped by Jen Easterly, Jan. 31, 2024,
hMps://www.c-span.org/video/?c5104695/user-clip-jen-easterly.

