LAWFARE

SECURITY BY
DESIGN

Investing in Rust

Shane Miller* JULY 2024

Research consistently attributes more than 50 percent of security vulnerabilities to errors that
are prevented by using memory-safe programming languages. Despite those benefits, adoption
of memory-safe languages is stalled in some domains, because memory-unsafe languages like C
and C++ have locked in the market. Unlike older memory-safe languages such as Java or Python,
the relatively new Rust language optimizes efficiency with memory safety. Unfortunately, Rust’s
innovative design and implementation are incompatible with existing engineering skills and
systems, creating market friction for adoption. This paper recommends U.S. public policy to
mitigate that friction and foster the adoption of memory-safe languages.

INTRODUCTION

In February 2024, a cyberattack on UnitedHealthcare Group threatened the solvency of
thousands of U.S. hospitals, sent “a substantial proportion” of Americans’ medical records into
the dark web,! and prevented untold thousands of patients from receiving their prescriptions.
Some 94 percent of U.S. hospitals were financially impacted, with nearly 60 percent reporting
daily losses over a million dollars.?2 One leader of an Idaho medical center devastated by this
attack called it “a bigger deal financially than Covid.”3

This breach is just the latest in what’s become routine: cyberattacks taking advantage of the
increasing fragility of America’s critical technology. At least 299 U.S. hospitals reported

*Shane Miller is a Distinguished Advisor to the Rust Foundation, where she was the founding chair of the board of
directors. Miller is also a senior fellow at the Atlantic Council Cyber Statecraft Initiative under the Digital Forensic
Research Lab and an advisory board member for the State of Open Con. She is the former founding leader of four
different organizations at Amazon Web Services (AWS), including Rust open source.

1 Zack Whittaker, “UnitedHealth Says Change Hackers Stole Health Data on ‘Substantial Proportion of People in
America,”” TechCrunch, April 22, 2024, https://techcrunch.com/2024/04/22/unitedhealth-change-healthcare-
hackers-substantial-proportion-americans/.

2 Noah Barsky, “UnitedHealth Paid Hackers $22 Million, Fixes Will Soon Cost Billions,” Forbes, June 7, 2024,
https://www.forbes.com/sites/noahbarsky/2024/04/30/unitedhealths-16-billion-tally-grossly-understates-
cyberattack-cost/.

3 John Sakellariadis, “Hospitals Are Pleading for Help. The NSC May Be Close to Giving It,” Politico, March 4, 2024,
https://www.politico.com/newsletters/weekly-cybersecurity/2024/03/04/hospitals-are-pleading-for-help-the-nsc-
may-be-close-to-giving-it-00144647.

Shane Miller, “Investing in Rust” JULY 2024

cyberattacks last year alone,* and health care is not a uniquely vulnerable sector. Some 80
percent of American school administrators say they have been the victims of ransomware
attacks,” causing schools to use “snow day” budgets for “cyber day” closures.® Major
companies—Walmart, Samsung, 23andMe, Microsoft, MGM Grand, Discord, T-Mobile,
ChatGPT—have reported catastrophic breaches. And that’s just in the past year.

In response to these growing attacks, the White House has established an agenda to improve
the cybersecurity of critical American infrastructure, launching a series of executive orders,’
strategies,® implementation plans,® and directives.!? One of the consistent cornerstones of the
White House cybersecurity campaign is addressing memory-safety classes of vulnerabilities,
saying, “We, as a nation, have the ability—and the responsibility—to reduce the attack surface
in cyberspace and prevent entire classes of security bugs from entering the digital ecosystem
but that means we need to tackle the hard problem of moving to memory safe programming
languages.”!?

Memory-safe programming languages prevent software engineers from making errors that are
frequently exploited by malicious actors, and that prevention has an outsized impact on
software security. Several industry analyses have concluded that memory-safe languages avoid
more than half of all security vulnerabilities, with both Microsoft!? and Google?®® research
attributing 70 percent of security vulnerabilities to using memory-unsafe languages. In addition
to security benefits, memory-safe languages reduce software maintenance expenses and
improve engineering agility. At the same time, factors that influence adoption of new
technologies are slowing the spread of memory-safe languages in some domains. Public-private

4 Nicole Sganga, “Latest Hospital Cyberattack Shows How Health Care Systems’ Vulnerability Can Put Patients at
Risk,” CBS News, Nov. 29, 2023, https://www.cbsnews.com/news/ardent-hospital-cyberattack-health-care-system-
vulnerability/.

5 Lauraine Langreo, “7 Data Breaches That Left Schools in the Lurch,” Education Week, Aug. 17, 2023,
https://www.edweek.org/technology/7-data-breaches-that-left-schools-in-the-lurch/2023/08.

6 Kavitha Cardoza, “One Reason School Cyberattacks Are on the Rise? Schools Are Easy Targets for Hackers,”
National Public Radio All Things Considered, March 11, 2024,
https://www.npr.org/2024/03/11/1236995412/cybersecurity-hackers-schools-ransomware.

7 Executive Office of the President [Joseph Biden]. Executive Order 14028: Improving the Nation’s Cybersecurity,
May 12, 2021. Federal Register, vol. 86, no. 2021-10460, pp. 26633-47,
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity.

& The White House, National Cybersecurity Strategy, March 1, 2023, https://www.whitehouse.gov/wp-
content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf.

 The White House, National Cybersecurity Strategy Implementation Plan, July 13, 2024,
https://www.whitehouse.gov/wp-content/uploads/2023/07/National-Cybersecurity-Strategy-Implementation-Plan-
WH.gov_.pdf.

10 The White House, Office of the National Cyber Director, “Future Software Should Be Memory Safe,” Press
Release, Feb. 26, 2024, https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-
report/.

11 |bid.

12 sebastian Fernandez, “A Proactive Approach to More Secure Code,” Microsoft, July 16, 2019,
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/.

13 Chromium Security, “Memory Safety,” Google, https://www.chromium.org/Home/chromium-security/memory-
safety/.

Security by Design Paper Series www.lawfaremedia.org

partnerships can address market friction with initiatives that highlight the business benefits and
lower the cost, complexity, and risk of memory-safe languages. Memory safety is good for
businesses and consumers, and strategic policies and investments can make it better.

Despite strong guidance in the past few years from agencies such as the National Security
Agency, which “recommend[ed] that organizations use memory safe languages when
possible,”* little has changed. Analyst firm Redmonk’s 2023 language report noted, “The
dominant trend [is still] lack of movement. While the industry around these programming
languages is evolving rapidly, the inertia of language traction has proven difficult to
overcome.”'> Memory-unsafe programming languages are not losing ground. The TIOBE
Index,'® which measures programming language popularity, found that increases in C++ were
equivalent to decreases in C from 2020 to 2024, keeping the overall popularity of memory-
unsafe programming languages unchanged, and other reputable indexes like PYPLY’ report
similar trends.

Unsafe code remains prolific because (a) memory safety was added to programming language
design long after engineers started building the software foundational to modern technology,
giving memory-unsafe languages a huge head start; (b) until Rust became viable, software could
not use memory-safe languages everywhere; and (c) market friction is slowing the adoption of
Rust. Historically, safe languages (like Java, Python, and JavaScript) have produced slow systems
that consume far more resources than their unsafe predecessors. For resource-restricted
solutions like mobile devices and the networks that connect them, safe languages have not
been an option. The relatively new Rust language offers a solution that combines the optimized
efficiency of memory-unsafe languages like C and C++ with the security of modern memory
safety. As a result, there are far fewer cases where using a memory-safe language is not possible
today, because technology manufacturers no longer need to sacrifice security for efficiency.

Rust is a new memory-safe language that can be used for many solutions previously without a
memory-safe option, like cloud computing and operating systems that require optimized
performance and resources. Rust achieves this by enforcing memory safety at compile time,
whereas other memory-safe languages (like Java, Python, and JavaScript) use a feature called a
“garbage collector” to manage memory while software is running. The garbage collector
handles the challenges and risks of memory management for the engineer, but it requires far
more resources®® and forces systems to pause periodically for cleanup. Rust delivers memory
safety without resource and performance penalties. To make that possible, Rust developers

14 U.S. National Security Agency, “Software Memory Safety,” Nov. 10, 2022,
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF.

15 Stephen O’Grady, “The RedMonk Programming Language Rankings: January 2023,” Redmonk, May 16, 2023,
https://redmonk.com/sogrady/2023/05/16/language-rankings-1-23.

16 TIOBE Index, TIOBE, https://www.tiobe.com/tiobe-index/.

17 PYPL Index, PYPL PopularitY of Programming Language, https://pypl.github.io/PYPL.html.

18 Matthew Hertz and Emery D. Berger, “Quantifying the Performance of Garbage Collection vs. Explicit Memory
Management,” Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications - OOPSLA '05, pp. 313-26. doi: 10.1145/1094811.1094836.

Shane Miller, “Investing in Rust” JULY 2024

must follow strict coding rules that ensure memory is managed correctly in their software, and
the Rust compiler that transforms code into executable software rejects code that does not
adhere to those rules.

While Rust’s innovation fills a critical memory-safety gap, the language’s design and
implementation are incompatible with existing engineering skills and systems, creating
substantial market friction for technology manufacturer adoption. Rust adoption is slowed by
four of the five factors influential in the diffusion of a new idea or innovation.® In addition to
(a) incompatibility and (b) its accompanying complexity, Rust struggles with (c) the observability
of adoption and (d) relative advantage. Relative advantage is the perceived improvement of an
innovation, and adoption is faster when relative advantage is high. Preventive innovations like
memory safety that lower the likelihood of a negative future event have a particularly slow rate
of adoption, because the reward is far in the future without clear evidence of causality.2°

Like any new technology, software made with Rust is also more expensive to build. Rust
developer salaries are among the highest paid,?! training existing engineers is challenging (only
47 percent of surveyed Rust engineers consider themselves productive using the language), and
building support infrastructure for the thousands of open source projects used to write Rust is a
substantial investment. At the same time, there is strong evidence that Rust lowers the cost of
software ownership by reducing maintenance costs over its total lifetime. Building software can
take months or even years, but if that software is successful and customers use it, maintaining
the software will take decades. As Amazon Web Services Distinguished Engineer Marc Brooker
said in 2020, “Software lasts a long time Initial development is the easy, relatively cheap part
of building a system, and the expensive part ... is maintaining it in production.”??

While software costs may be amortized by customers over just a few years, that software is
often used in production for significantly longer, because replacing business-critical software is
expensive and risky. As software becomes larger and more complex, the costs and risks of
replacing it grow. Researchers studying organizational behavior and sentiment with legacy
systems noted the common opinion that “by definition a legacy system is business critical. A
system that is old and obsolete and is not business critical would never reach the status of
legacy.”?® Frequently, only parts of legacy systems are replaced over time, while the original
software persists in production for some functionality.

19 Everett M. Rogers, Diffusion of Innovations, 5th ed. (Free Press, 2003), 266.

20 |bid, 234.

21 Afifa Mushtaque, “5 Highest-Paying Programming Languages in USA,” Insider Monkey, July 17, 2023,
https://www.insidermonkey.com/blog/5-highest-paying-programming-languages-in-usa-1168666/4/.

22 Marc Brooker, “Building Technology Standards at Amazon Scale,” YouTube, uploaded by AWS Events, Feb. 5,
2021, https://youtu.be/2xoNsusfOyE?si=zMKt528CF27Ev3-1.

23 Ravi Khadka, Belfrit Batlajery, Amir Saeidi, et al., “How Do Professionals Perceive Legacy Systems and Software

Modernization?” ACM Proceedings of the 36th International Conference on Software Engineering, 2014, pp. 36—47.
doi: 10.1145/2568225.2568318.

Security by Design Paper Series www.lawfaremedia.org

Unfortunately, the maturity of our legacy technology is not yielding better security. Detailed
reviews of mature open source software like the Linux operating system distribution Debian, the
programming language PHP, and the Java developer platform OpenJDK have found that security
does not improve over time and more generally that “we have not reached the point of curbing
the vulnerability rate.”?* The new Rust programming language makes memory safety possible in
far more technologies, preventing most security vulnerabilities from being created in the first
place.

At the same time, Rust is open source, challenged with supply chain risks and complexities
common to all community-supported software. Moreover, programming languages like Rust are
a subset of open source, and other open source projects like the operating system Linux are
implemented using those languages. This circular dependency requires analysis that considers
both Rust-specific issues and more general issues relating to open source software that impact
Rust. One of those challenges is the growing tension between China and the United States.

While U.S. policymakers have restricted China’s access to advanced hardware?® and passed a
law demanding that the Chinese company ByteDance sell TikTok or stop operating the mobile
app in the United States,?® almost all U.S. technology is built by teams composed of both China-
and U.S.-funded engineers. Some 96 percent of technology includes open source, and the
technologies that use open source are made up primarily of open source software. Detailed
scans across a wide variety of critical industries, such as health care, finance, and
transportation, found that 77 percent of the software’s code originates from open source, and
open source is as Chinese as it is American.?’

China protects its software supply chain from political intervention?® and malicious interference
(like the recent XZ Utils attack)?® by providing a government-funded, quality-controlled copy of
open source for Chinese corporations and developers.3° Open source projects like Rust have

24 Nikolaos Alexopoulos, Sheikh Mahbub Habib, Steffen Schulz, and Max Miihlhatiser, “The Tip of the Iceberg: On
the Merits of Finding Security Bugs,” ACM Transactions on Privacy and Security 24, no. 1 (2021): 1-33. doi:
10.1145/3426975.

5 Josh Boak, “The Commerce Department Updates Its Policies to Stop China From Getting Advanced Computer
Chips,” Associated Press, Oct. 17, 2023, https://apnews.com/article/computer-chips-export-china-biden-raimondo-
78225ba8d1609137e859f68a80f6e91e.

26 Bobby Allyn, “President Biden Signs Law to Ban TikTok Nationwide Unless It Is Sold,” National Public Radio, April
24,2004, https://www.npr.org/2024/04/24/1246663779/biden-ban-tiktok-us.

27 Fred Bals, “2024 Open Source Security and Risk Analysis Report,” Synopsys, Feb. 27, 2024,
https://www.synopsys.com/blogs/software-security/open source-trends-ossra-report.html.

28 Rita Liao, “China Is Building a GitHub Alternative Called Gitee,” TechCrunch, Aug. 21, 2020,
https://techcrunch.com/2020/08/21/china-is-building-its-github-alternative-gitee/.

2% Kevin Roose, “Did One Guy Just Stop a Huge Cyberattack?” New York Times, April 3, 2024,
https://www.nytimes.com/2024/04/03/technology/prevent-cyberattack-linux.html.

30 Coco Feng, “Gitee, China’s Answer to GitHub, to Review All Code by Temporarily Closing Open source Projects to
the Public,” South China Morning Post, May 19, 2022, https://www.scmp.com/tech/big-tech/article/3178323/gitee-
chinas-answer-github-review-all-code-temporarily-closing-open.

Shane Miller, “Investing in Rust” JULY 2024

become a global public good worth nearly $9 trillion,3! and U.S. public policy can have historic
economic security impact by addressing risks to important open source work like memory-safe
languages that are foundational to the resilience of critical infrastructure as well as the market
hurdles that stall adoption of emerging solutions like Rust.

What is needed now is a jump-start. This paper outlines a policy proposal that provides for

e an addition to the critical infrastructure information technology sector,

e acloud computing tax to fund critical U.S. cyber defense,

e U.S.-sponsored governance for emerging cybersecurity solutions like Rust, and
e a U.S.-sponsored open source library verification service.

Secure-by-design must include memory-safe-by-default, and memory-safe-by-default needs
secure and accessible memory-safe programming languages. Public policy must extend beyond
driving adoption of memory-safe languages to supporting the security and stability of them.
Before elaborating on these policy objectives in greater detail, this paper provides a more
detailed explanation of memory-safe languages and, particularly, the significant improvements
arising from the use of the Rust language.

RUST LOWERS THE TOTAL COST OF SOFTWARE OWNERSHIP

Memory-safe languages reduce the effort required for operations, freeing engineers to focus
on building a new version or feature for their product. Modern software development is an
iterative process in which product launch is not the end of the effort but the beginning of
operations roles and responsibilities for the engineering team.

After a product launch, engineering resources cannot focus exclusively on building new features
because attention and capacity must be split between building the next thing and operating the
existing one. Operating costs have a huge impact on the team’s ability to stay agile and
competitive. Operational tasks like on-call rotations3? and fixing suboptimal software33 can
adversely impact team morale and performance in all areas if they are not managed and
contained. Maintaining and evolving software includes engineering work for

e monitoring and reacting to system operations,

e patching security vulnerabilities,

e fixing bugs, and

e adding new features to support evolving user needs.

31 Rachel Layne, “Open Source Software: The $9 Trillion Resource Companies Take for Granted,” Harvard Business
School Working Knowledge, March 22, 2024, https://hbswk.hbs.edu/item/open source-software-the-nine-trillion-
resource-companies-take-for-granted.

32 Grace E. Vincent, Katya Kovac, Leigh Signal, et al., “What Factors Influence the Sleep of On-Call Workers?”
Behavioral Sleep Medicine 19, no. 2 (2021): 255-72. doi: 10.1080/15402002.2020.1733575.

33 Terese Besker, Hadi Ghanbari, Antonio Martini, and Jan Bosch, “The Influence of Technical Debt on Software
Developer Morale,” Journal of Systems and Software 167 (2020). doi: 10.1016/j.jss.2020.110586.

Security by Design Paper Series www.lawfaremedia.org

Rust’s newness and immaturity increase the initial time and cost of software development, but
its combination of efficiency and memory safety decrease the substantially larger cost of
maintenance and operations that consumes 60 to 70 percent of an engineering organization’s
resources.3* The quality and security improvements baked into software built with memory-safe
programming languages have delivered 60 percent fewer memory-safety vulnerabilities, > 75
percent fewer bugs,?® and ten times fewer failures®’ for early memory-safety migrations,
empowering software engineers to iterate and refactor more, keeping software and its
dependencies current throughout its lifetime. Using a conservative assumption of a 50 percent
reduction in effort for operations, security patching, and bug fixing, memory safety frees 30
percent (half of 60 percent) of an engineering team’s maintenance capacity. For a one-hundred-
person engineering organization, that means memory-safe languages can nearly double the
number of engineers working on new features and products, from forty to seventy people.

Monitoring and Reacting to System Operations

Before software is made available to customers, engineering teams create dashboards with
metrics that provide visibility into the operations of their software and set alarms that go off in
the event of failures. They create “on-call” rotations for first responders and runbooks with
protocols those operators will follow. Software errors require immediate attention when they
impact customers, and engineering operations assume systems will fail. New users and
increased traffic interact with software in ways its authors did not predict, revealing latent bugs
and security vulnerabilities. The operational controls the team sets up will identify some of
those challenges, while manual reports like emails or customer service calls will catch others.
The engineering team will review reports as it receives them, classify them through a triage
process, and establish a plan to fix or mitigate them. In many cases, the team will change the
software with a fix to the original code, and in some cases, the team will also update its
operations tools and processes.

Amazon Prime Video observed huge reductions in the frequency of those operational errors
with their memory-safe migration. Amazon’s Prime Video team migrated from JavaScript to Rust
and WebAssembly for performance improvements. As part of that migration, the team also
replaced a portion of unsafe C++ code with Rust. Adopting memory-safe code significantly
improved service reliability. The crash rate for Amazon’s new Rust software is ten times

34 Andrea Bordin and Fabiane Barreto Vavassori Benitti, “Software Maintenance: What Do We Teach and What
Does the Industry Practice?” XXXII Brazilian Symposium on Software Engineering, 2018. doi:
10.1145/3266237.3266251.

35 Jeffrey Vander Stoep, “Memory Safe Languages in Android 13,” Google Security, Dec. 1, 2022,
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html.

36 Adam Zabrocki and Alex Tereshkin, “Exploitation in the Era of Formal Verification,” YouTube, uploaded by
DEFCONConference, Oct. 20, 2022, https://youtu.be/TclaZ9LW1WE?si=21029TQtPp9Uo75n.

37 Alexandru Ene, “Optimizing Prime Video With WebAssembly and Rust,” YouTube, uploaded by International
JavaScript Conference, Sept. 20, 2022, https://youtu.be/erdHTxghyMO0?si=2tRL_7u8EbjNW7KO.

Shane Miller, “Investing in Rust” JULY 2024

smaller than for their C++ systems.3® The Prime Video Rust and C++ services are authored and
operated by the same team of engineers, the code bases are relatively similar in size, and
they’re following industry best practices for preventing, detecting, and correcting memory
errors in their C++ code, providing a useful baseline for comparison. Reducing crashes by ten
times reduces the number of alarms Amazon’s systems sound, the number of times the
engineering team must triage a crash, and the number of fixes the team must apply to its
software. That substantially lowers the cost of operations, creates a better experience for users,
and gives the team more capacity to build profitable new features.

Patching Security Vulnerabilities

Some of the most urgent and important software errors will be exploitable vulnerabilities. The
operational savings that companies like Amazon reap from safe programming languages come
as a wonderful side effect of the memory safety baked into those languages to ensure
correctness. Memory-safe languages are the most effective and cost-efficient protection from
malicious activity because most security vulnerabilities are errors that are not possible with
memory-safe programming languages. Despite a surge in security and developer tools,
education, and process investments over the past couple of decades, open source software
security research suggests that “we have not yet achieved an adequate degree of rigorousness
in our development and security processes ... [because] the number of [security] vulnerabilities
[in software] does not visibly decrease over time, even for software that has been stable for
many years.”3°

Researchers find that software vulnerabilities identified in new releases are not overwhelmingly
new but often residual bugs present in previous releases and identified only as the result of
fresh security examinations triggered by a new release. Each vulnerability goes through an
operations engineering team process. It is reported and triaged, before a fix to some code is
implemented, tested, and deployed. Some users update their software and receive that fix,
while others continue to operate exploitable versions. Implementing software with memory-
safe languages prevents most security vulnerabilities from ever being created. Instead of
spending valuable engineering time finding and fixing these security vulnerabilities in
production, where they are most expensive, memory-safe software is secure by design.

The Google Android team has been taking advantage of those benefits, because their team
found that memory errors by developers in C and C++ code disproportionately accounted for
their most dangerous security vulnerabilities. In 2022, lack of memory safety accounted for 86
percent of critical severity vulnerabilities and 89 percent of remotely exploitable vulnerabilities.
Over the past several years, 78 percent of confirmed exploited vulnerabilities on Android
devices were memory bugs.*°

38 Ibid.
39 Alexopoulos et al., supra note 24.
40 vander Stoep, supra note 35.

Security by Design Paper Series www.lawfaremedia.org

The Google Android team is transitioning to memory-safe programming languages like Java,
Kotlin, and Rust, and more than half of the new code in Android version 13 was written with
those safe languages. The result of the transition has been consistent drops in memory-safety
vulnerabilities as well as the severity of vulnerabilities still reported, with vulnerabilities reduced
more than 60 percent over the past four years (see Figure 1). That’s 60 percent fewer security
fire drills for the Google Android team, because they started using memory-safe programming
languages by default. That saves the Google Android team substantial money and time that they
can invest in building new features (like upgraded camera and media options) for their product.

Memory Safety Vulnerabilities Per Year
250

200
150
100

50

0
2019 (10) 2020 (11) 2021 (12) 2022 (13)

Year (Android release)

Figure 1. Google Android memory-safety vulnerabilities.
Fixing Bugs

The Rust compiler prevents software engineers from unknowingly producing code with
memory-safety bugs, and that improves both the security and the resilience of the software
Rust is used to build. Fixing bugs earlier in the development life cycle is also substantially
cheaper because resources and processes accumulate as software moves through the
development life cycle, slowing down changes and exponentially increasing their cost. Figure 2
shows the theoretical increased costs of bug fixes over time.*! Memory safety enforces
correctness at compile time, lowering the cost of maintaining software by keeping memory bugs
out of production at all. Companies like Nvidia, Amazon, and Google have seen that impact to
operations in their migrations to memory-safe languages.

41 penny Grubb and Armstrong A. Takang, Software Maintenance: Concepts and Practice, 2nd ed. (World Scientific
Publishing, 2003), 26.

Shane Miller, “Investing in Rust” JULY 2024

Costs for fixing bugs

>
Operation &
Maintenance

|

|

|

| |

| |

| |

[| | |
| |

| |

I |

t t
Requirements | Design | Implementation Testing
| |

Figure 2. Cost of fixing bugs over the software development life cycle.

Fixing bugs and security vulnerabilities is necessary corrective maintenance, and sometimes
engineers introduce new, unintended problems called “regressions” when implementing them.
There is a nontrivial likelihood that a well-intentioned code fix will have an adverse impact
because of the complexity of modern systems and lack of institutional knowledge due to high
engineering turnover.*2 Memory safety prevents engineers from introducing new memory bugs,
which decreases the frequency of regressions and lowers the cost of bug fixes.

The Nvidia Offense Security Research team compared code bugs in their solutions built with
unsafe (C/C++) and memory-safe (SPARK) programming languages. They did side-by-side
comparisons of safe and unsafe for root of trust and resource management, operating systems,
and boot control. Nvidia found 71-78 percent fewer bugs in memory-safe implementations of
their memory-unsafe software, and on average, 54 percent of the bugs identified in the unsafe
code were memory-safety bugs.*® Using a memory-safe programming language dramatically
decreased the number of bugs in their software, delivering a similarly dramatic decrease in the
cost of operating that software.

Adding New Features to Support Evolving User Needs

Finally, modifying Rust is less risky than memory-unsafe languages, generating tremendous
savings over its lifetime. Billions of lines of code in production today were written decades
ago,** and the developers operating and maintaining those applications are not their original
authors. The technology industry has one of the highest employee turnover rates at 12.9
percent, which is more than 20 percent higher than the average for all industries.** For a ten-
person engineering team, that means that half the team building a new software solution will
be gone within four years, and none of the original authors will still be working on the

42 Greg Lewis and Joseph Sorofigon, “Industries With the Highest (and Lowest) Turnover Rates,” LinkedIn Talent
Blog, Aug. 11, 2022, https://www.linkedin.com/business/talent/blog/talent-strategy/industries-with-the-highest-
turnover-rates.

43 Zabrocki and Tereshkin, supra note 36.

44 Owen Hughes, “This Old Programming Language Is Much More Important Than You Might Expect. Here’s Why,”
ZDNet, Feb. 9, 2022, https://www.zdnet.com/article/programming-languages-how-much-cobol-code-is-out-there-
the-answer-might-surprise-you/.

45 Lewis and Sorofigon, supra note 42.

10

Security by Design Paper Series www.lawfaremedia.org

application in eight years. As a result, the engineers maintaining software frequently do not
have a deep understanding of how the software was designed, and they will approach the
discovery process for understanding the behavior of the code differently.

The safety net provided by a memory-safe language makes engineering teams more agile,
because code changes are less risky. While the Rust compiler’s strict adherence to correctness
might have slowed the initial development of software, the engineers tackling maintenance of
that system will reap its benefits. The compiler will not overlook memory errors, and the
engineers’ experimentation will yield feedback at compile time rather than later during runtime
testing. That feedback loop is faster and less expensive, improving the productivity of engineers
maintaining and operating software written in Rust.

Rust is also the easiest programming language to sight-read. Engineers reading new code are
like musicians reading unfamiliar sheet music. There are always recognizable elements, but the
theme, pace, and key may be outside of the player’s experience. In software, those unfamiliar
elements can take a developer through a complicated maze of dependencies and logic trees,
and Rust makes the trail of logic in a program easier to follow. Researchers have concluded that
Rust has a significantly lower cognitive complexity than C, C++, Python, JavaScript, and
TypeScript (all languages studied), “meaning that [Rust] can guarantee the highest
understandability of source code compared to all others.”*® As a result, software maintainers
can understand unfamiliar Rust code far more quickly than code written in many other popular
languages.

The improved understandability of Rust as well as the reduced risk of regression make new
features less expensive and disruptive for an engineering team. Many legacy systems are stuck
in time because of lost opportunities to make noncritical improvements. Features, fixes, and
upgrades are often low impact individually, and for complex systems written in memory-unsafe
programming languages, they are not worth the risk of regressions that can introduce new,
invisible security vulnerabilities. Using a memory-safe language reduces the cost of lost
opportunities for improvements to software over its lifetime.

TAKEAWAYS FOR POLICYMAKERS

The Rust programming language fills a substantial gap in memory-safe language solutions,
making memory safety possible in far more domains. In addition to improving cybersecurity for
technology manufacturers, memory safety lowers the total cost of maintaining software over its
lifetime, delivering real value to both consumers and producers. Despite those advantages, Rust
may always be a niche solution on the bleeding edge of tech because of the lock-in memory-
unsafe languages have achieved and the market friction inherent in Rust’s design and support.
That lock-in means that malicious actors will continue to exploit vulnerabilities that would be
prevented with memory safety—vulnerabilities like buffer overflows, use-after-free, and out-of-

46 Luca Ardito, Luca Barbato, Riccardo Coppola, and Michele Valsesia, “Evaluation of Rust Code Verbosity,
Understandability and Complexity,” PeerJ Computer Science 7 (2021). doi: 10.7717/peerj-cs.406.

11

Shane Miller, “Investing in Rust” JULY 2024

bounds reads and writes that enable threats like the 1988 Morris worm, the 2016 Heartbleed
bug, the 2016 Trident attack, and the 2017 WannaCry attack.

For many resource-constrained technologies, like mobile phones and the networks that connect
them, Rust is the only viable memory-safe language available today, but Rust’s immaturity
introduces new risks for technology manufacturers. Rust has (a) limits to the scope of its
memory safety, (b) missing audits and alerts for code that has disabled memory safety,*’ (c)
missing standard security tools for memory-unsafe Rust code,*® and (d) an unusually large
number of third-party dependencies.? It is not true that all Rust code is memory safe, and we
have a lot more work to do before it is.

Like most popular programming languages, Rust is not a single product. The Rust programming
language is a collection of open source projects built and maintained by thousands of people
over more than a decade, and like all open source software, Rust is available “as is” with no
warranty. There is no authority responsible for the memory-safety claims of Rust nor liable for
its failures. That is true for all open source software, and some of the challenges with Rust’s
stability and maturity are common across open source projects.

Today, open source delivers foundational code for almost every technology, as community
freeware has penetrated every domain. Aerospace, automotive, mobile phones, “internet of
things,” e-commerce, artificial intelligence, health care, virtual reality—they are all open
source.>® Open source projects are like Lego building blocks, and engineers create consumer
technology by putting these blocks together in different ways to create unique solutions. With
few exceptions, open source software is not owned or maintained by any single legal entity.
Open source offers no maintenance contract nor responsible authority. Nothing is guaranteed
nor warrantied.

Public policy can have historic economic impact by addressing risks to critical open source
projects like memory-safe languages as well as the market hurdles that stall adoption of new
security solutions like Rust. This paper recommends

e an addition to the critical infrastructure information technology sector,

e acloud computing tax to fund critical U.S. cyber defense,

e U.S.-sponsored governance for emerging cybersecurity solutions like Rust, and
e a U.S.-sponsored open source library verification service.

47 Steve Klabnik and Carol Nichols, “Unsafe Rust,” The Rust Programming Language, https://doc.rust-
lang.org/book/ch19-01-unsafe-rust.html.

48 Joe Sible and David Svoboda, “Rust Software Security: A Current State Assessment,” Carnegie Mellon University
Software Engineering Institute, Dec. 12, 2022, https://insights.sei.cmu.edu/blog/rust-software-security-a-current-
state-assessment/.

49 Sergio De Simone, “Static Analyzer Rudra Found Over 200 Memory Safety Issues in Rust Crates,” InfoQ, Nov. 13,
2021, https://www.infog.com/news/2021/11/rudra-rust-safety/.

50 Bals, supra note 27.

12

Security by Design Paper Series www.lawfaremedia.org

Addition to the Critical Infrastructure Information Technology Sector

Programming languages and hardware (physical machines) are the roots of all technology, and
the design, implementation, and management of programming languages is done largely by
anonymous open source community volunteers all over the world. We are connected across
geographies, politics, and socioeconomic boundaries not just by the technologies we use but
also in the collaborative creation of those technologies, and policymakers should incorporate
an understanding of those relationships into both foreign and domestic policy.

If you look closely at the long agreements that come with the technology you’re using today,
you’ll see names of open source engineers like Daniel Stenberg where a company’s ought to be.
Daniel’s name and software project (curl) are listed in the copyright for everything from Grand
Theft Auto to Spotify to Volkswagen minivans.>! Moreover, Daniel’s work depends on Sean
McArthur’s, and Sean McArthur’s work depends on Vadim Petrochenkov’s, and so on—a global
web of descendants of the early internet trailblazers.

That global community is supported by companies and governments all over the world,
including substantial investment from China. In fact, the Chinese company Huawei holds more
than 450 key positions within 800 standards organizations, industry alliances, open source
communities, and academic associations,”? including board seats on open source foundations
like Linux Foundation, Rust Foundation, and OpenSSF. The Chinese company ByteDance holds a
board seat at the Apache Software Foundation, and both ByteDance and Kuaishou Group are
members of the Open Invention Network, the largest patent non-aggression consortium
worldwide. Futurewei, the U.S.-based research and development subsidiary of Huawei, directly
employs roughly half of the full-time paid maintainers of the Rust project. U.S. restrictions on
China’s access to advanced hardware®? are inconsistent with our significant dependence on
Chinese funding for open source projects like the Rust programming language.

Early Rust adoption is focused on security-sensitive domains like mission critical systems,
infrastructure services, and operating systems, while the Rust toolchain and ecosystem have
significant security vulnerabilities with high likelihood of attack and high severity impact that
the community is working to address.>* That community is an international partnership with the
most substantial contributions of time, talent, and money coming from both the United States
and China, and that is challenging to navigate in the current political climate. To be sure, the
way forward must be cognizant of ongoing strategic adversarial imperatives, but at the same
time, technical collaborations with Chinese organizations can be meaningful. The U.S.

51 pDaniel Stenberg, “Screenshotted Curl Credits,” Daniel Stenberg blog, Oct. 3, 2016,
https://daniel.haxx.se/blog/2016/10/03/screenshotted-curl-credits/.

52 “Openness, Collaboration, and Shared Success,” Huawei, https://www.huawei.com/en/corporate-
information/openness-collaboration-and-shared-success.

53 Boak, supra note 25.

54 Rust Foundation, “Security Initiative Report,” Feb. 15, 2024, https://foundation.rust-
lang.org/static/publications/security-initiative-report-february-2024.pdf.

13

Shane Miller, “Investing in Rust” JULY 2024

government must take responsibility for managing the inherent risks, so that these open, global
communities can continue to focus on pioneering technology advancements.

U.S. government agencies prevent, deter, and mitigate risks to sectors identified by the
Cybersecurity and Infrastructure Security Agency (CISA) as “critical infrastructure.” The
information technology (IT) sector is one of the sixteen critical infrastructure sectors managed
by the U.S. government today,>> and CISA’s IT sector protection plan covers six critical functions.
These include core functions like the Domain Name System (DNS), internet routing
infrastructure, and communication services. Programming languages are also a technology vital
to our national economic security, and they should be added as the seventh critical function of
the IT sector. The IT sector protection plan for programming language risks should include
mechanisms to identify the most critical languages, continuously evaluate the security and
stability of those languages, provide regular public reports on weaknesses identified and
mitigated, and respond to vulnerability reports and support requests from language stewards
like the Rust Foundation.

Cloud Computing Tax for U.S. Cyber Defense

Today’s technology stands on a foundation of public goods created by passionate volunteers,
and our global security depends not on “the industry” as some security leaders have asserted,
but on the quality, stability, and security of the open source building blocks the tech industry
uses. The U.S. government must take real responsibility for defending the American public from
the outsized risks of sharing critical public goods that are the foundation of our economic
infrastructure, with state actors whose “multi-pronged assault on our national and economic
security” they believe to be “the defining threat of our generation.”>® Congress and the
president cannot delegate the consumer safety of public goods to private institutions like big
tech, but they can demand that big tech, as the primary beneficiary of open source software, be
held accountable for funding the security of that work without which their own products would
cost 3.5 times more to build.>’

In 1956, Congress passed the Interstate and Defense Highways Act, creating a fund that uses
fuel taxes to pay for critical American roads and bridges, and today, our national economy
demands an equally bold investment in our digital networks. Following the Interstate Act’s
model that uses a consumption tax to pay for the interstate infrastructure on which consumers
depend, Congress should act quickly to pass an Internet Defense Act that creates a federal cloud
computing tax to fund a new Open Source Trust and increase funding for existing national

55 U.S. Cybersecurity and Infrastructure Security Agency, “Critical Infrastructure Sectors,”
https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/critical-infrastructure-sectors.

56 U.S. Federal Bureau of Investigation, “Director Wray’s Opening Statement to the House Select Committee on the
Strategic Competition Between the United States and the Chinese Communist Party,” Jan. 31, 2024,
https://www.fbi.gov/news/speeches/director-wrays-opening-statement-to-the-house-select-committee-on-the-
chinese-communist-party.

57 Manuel Hoffman, Frank Nagle, and Yanuo Zhou, “The Value of Open Source Software,” Harvard Business School
Working Paper No. 24-038, January 2024, https://www.hbs.edu/faculty/Pages/download.aspx?name=24-038.pdf.

14

Security by Design Paper Series www.lawfaremedia.org

security organizations and partners like the National Institute of Standards and Technology
(NIST), CISA, and the Carnegie Mellon University Software Engineering Institute (CMU SEI).

While twenty-four states currently tax the sales of software-as-a-service (SaaS),>® there is no
state or federal sales tax on infrastructure-as-a-service (laaS). That means that when Meta pays
Amazon Web Services for cloud compute services like Amazon EC2, no sales tax is due. At the
same time, researchers estimate that the cost of creating technologies like Amazon EC2 without
open source software would be 3.5 times higher than it is today.>® Introducing a cloud sales tax
to fund improvements to the security and stability of open source software used to build the
cloud makes cloud computing more secure and improves the security and stability of open
source for all technology. A cloud computing tax is long overdue, and it must be collected to
secure the software supply chain for American consumers.

The Interstate and Defense Highways Act introduced a federal fuel tax that was 18.4 cents per
gallon in 2023,%° while the average price of gasoline was $3.634 per gallon,®! making the
effective gasoline tax a little more than 5 percent. The biggest (American) cloud providers
generated $270 billion in revenue that year,%? and a comparable federal cloud computing tax of
5 percent would have produced $13.5 billion for cybersecurity in 2023 alone. That is the order
of magnitude that is both possible and required to protect America’s critical infrastructure.

A cloud sales tax would put the cost of securing open source for U.S. economic stability on the
companies that have profited the most from open source software—its biggest consumers. The
Open Source Trust can offer financial support to open source communities, allow for more free-
flowing exploration of our technology frontier, and close a gaping hole in America’s economic
stability. In the White House’s own words, “Government’s role is to protect its own systems
[and] to ensure private entities, particularly critical infrastructure, are protecting their
systems[.]”® Technology companies rely on open source as a public good, and policymakers
owe it to American consumers to ensure the security and resilience of that public good.

U.S. Governance for Emerging Cybersecurity Solutions

We cannot make memory-safe languages an industry standard without mainstream adoption,
and today, Rust is the most prominent memory-safe language for performance sensitive

58 “Introduction to SaaS taxability in the US,” Stripe, https://stripe.com/guides/introduction-to-saas-taxability-in-
the-us.

%9 Hoffman, et al., supra note 57.

60 U.S. Department of Transportation, “When Did the Federal Government Begin Collecting the Gas Tax?” Highway
History, https://www.fhwa.dot.gov/infrastructure/gastax.cfm.

61 U.S. Energy Information Administration, “U.S. All Grades All Formulations Retail Gasoline Prices (Dollars per
Gallon),” Petroleum & Other Liquids,
https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&s=emm_epm0_pte_nus_dpg&~f=m.

62 Mark Haranas, “Cloud Market-Share Q4 2023 Results: AWS Falls as Microsoft Grows,” CRN, Feb. 2, 2024,
https://www.crn.com/news/cloud/2024/cloud-market-share-q4-2023-results-aws-falls-as-microsoft-grows.

3 The White House, National Cybersecurity Strategy, supra note 8.

15

Shane Miller, “Investing in Rust” JULY 2024

domains. At the same time, Rust has big, open challenges that require strong product,
engineering, and program leadership, but Rust’s decentralized governance and individualized
priorities prevent the community from organizing the big improvements needed to break into
the mainstream market. Rust must leap across the market chasm pictured in Figure 3 to
transition from innovators and visionaries on the leading edge of technology to pragmatists in
the mainstream market. Pragmatists, or the early majority, are not adventurous founders and
innovators. These are the folks that commit and stay the course, and their goal is to make
“incremental, measurable, predictable progress.”®* Market pragmatists invest in proven
technologies offered at reduced prices, and they are the gateway to the entire mainstream
market. New technologies remain niche solutions used by a few tech enthusiasts until they are
accepted and adopted by market pragmatists.

EARLY MARKET THE CHASM MAINSTREAM MARKET

CONSERVATIVES

| TECH ENTHUSIASTS

P

EARLY EARLY LATE
INN(;\;A;"ORS ADOPTERS MAJORITY MAJORITY LAﬁi::DS
) 13.5% 34% 34%

Figure 3. Breaking into the mainstream market.

Rust was built by more than nine thousand volunteers. While many successful open source
projects (e.g., Linux) have leaders with decision-making authority, other open source
communities like Rust have no comparable leadership. The fluid development and
organizational slack permitted by Rust sponsors and employers incubates innovation that’s not
possible in more structured organizations,® but that same lack of governance inhibits the
community’s ability to deliver results efficiently and effectively. As a result, large initiatives that
require more than a couple of people to collaborate and commit are not achievable, and
external governance intervention will be necessary to close the gaps in Rust for mainstream
users.

Taking Rust across the chasm from early adopters to the mainstream market requires (a)
credible testimonies on the costs and returns of Rust investments and (b) reductions in costs
and risks of using Rust without losing benefits. The mainstream market relies on success stories
from trusted references. It seeks evidence that new technologies can succeed, and too many
early adopters of Rust are keeping the details of their migrations private. The mainstream
market is not interested in whether Amazon, Google, Microsoft, and Meta are using Rust—

54 Geoffrey A. Moore, Crossing the Chasm, 3rd ed. (HarperCollins, 2014), 55.
85 Rogers, supra note 19, p. 412.

16

Security by Design Paper Series www.lawfaremedia.org

mainstream market leaders and engineers want to know how much those companies are paying
to adopt Rust and what the return on that investment has been. There are private anecdotes of
Rust code outperforming legacy C applications because engineers felt more confident
optimizing Rust. There are also private buyer-beware tales of Rust engineering teams blocked
on performance regressions for days because the tools available to inspect Rust performance
issues are inadequate.

Programs that create actionable guidance and referenceable case studies for memory-safety
adoption have a big effect, and incentivizing early adopters to share their Rust migration
successes and challenges publicly would materially influence memory-safety adoption.
Technology companies announcing a few million dollars’ investment in their internal projects,
maintainer sponsorships, or foundation donations have little impact beyond the direct
recipients of those funds. Widespread memory-safety adoption requires credible
observability.

In December 2023, CISA, the National Security Agency, and the FBI partnered with similar
agencies from four other countries to author “The Case for Memory Safe Roadmaps” that
“urge[s] software manufacturers to create and publish memory safe roadmaps that detail how
they will eliminate memory safety vulnerabilities in their products.”®® Publishing documents that
articulate a plan for Rust migration as part of a memory-safety roadmap would substantially
improve the observability of existing Rust adoption and spur near peers to begin their own
planning, but this is a giant first step. There are incremental successes that could make the
larger effort of a roadmap more achievable while delivering earlier observability.

The roadmap guidance developed by U.S. government agencies and international partners
offers very few insights to technology manufacturers interested in pursuing a memory-safety
roadmap, and the suggestions provided are ambiguous and expensive. The roadmap guidance
for prioritization includes advice like “start with new and smaller projects” and “prioritize
security critical code,” and guidance for planning advises steps like “ensure teams have access to
training” and “create a staffing pipeline.” A public-private partnership effort to build an
actionable cookbook for memory-safety migration would be a better first step than urging
technology manufacturers to use the one available today.

CISA should partner with early Rust adopters to identify their insights, costs, and wins and
visibly incorporate that data into the roadmap guidance. The guidance from that exercise would
reduce complexity, increase perceived relative advantage, and improve confidence across the
industry. The objectives of this guidebook would be to (a) describe clearly and unambiguously
how to approach a migration, (b) establish realistic expectations for upfront costs and risks, (c)
identify organizations, initiatives, and alliances available for support, and (d) provide a calculator
for the long-term cost savings that technology manufacturers can expect after their migration to
memory safety. CISA should lead an initiative to create this cookbook for memory-safety

56 U.S. Cybersecurity and Infrastructure Security Agency, “The Case for Memory Safe Roadmaps,” Dec. 6, 2023,
https://www.cisa.gov/resources-tools/resources/case-memory-safe-roadmaps.

17

Shane Miller, “Investing in Rust” JULY 2024

migration starting with Rust, where there is little institutional knowledge available today, and
this work should be funded by the Open Source Trust.

A deep dive into memory-safety migrations will also make the limitations and risks of memory-
safe languages like Rust clear to CISA, giving them the data to lead more effective governance of
critical tools that CISA believes can address a large class of cybersecurity vulnerabilities. For
example, the Rust compiler, which enforces Rust’s safety guarantees, has limitations that have
an outsized impact on the effectiveness of migrations, where there is likely to always be some
residual memory-unsafe code in a system. The Rust compiler checks the memory safety of an
engineer’s code before transforming it into an executable program, but when Rust code is
interfacing with unsafe code in languages like C and C++, the compiler does not have enough
information to classify behavior as memory safe. Rust includes a special keyword (“unsafe”) that
an engineer can use to tag these kinds of implementations, and the Rust compiler will skip
memory-safety validations on the tagged code.

Since this is comparable to taking the memory-safety properties out of Rust, software engineers
are expected to limit the use of “unsafe Rust” to the smallest possible scope. However,
anecdotal reports of faster software performance with “unsafe Rust” have incentivized using it
more widely and introduced additional risk. Some Rust libraries use “unsafe Rust” more broadly
than necessary, reducing the memory safety of their Rust code. “Unsafe Rust” is unavoidable
today, but engineers need education and tools to know when to use it and how to mitigate the
risks “unsafe Rust” introduces.

As a result of the gaps in Rust’s memory-safety and analysis tools, Carnegie Mellon University
Software Engineering Institute researchers “categorize Rust as a safer language, rather than a
safe language, because the safety Rust provides is limited.”®” More mature memory-safe and
memory-unsafe languages are evaluated for cybersecurity vulnerabilities by software engineers
using static and dynamic analysis tools, and there are only experimental, proof-of-concept
analysis tools available for Rust today.®® CMU SEI should receive Open Source Trust funding to
continue their research and development and (a) reduce the limitations of the Rust compiler, (b)
audit the Rust compiler’s correctness in assessing the memory safety of Rust code, and (c)
develop both static and dynamic analysis tools for safe and unsafe Rust.

Rust is also susceptible to open source security risks. Two years ago, the author of the social
media post shown in Figure 4 described taking control of a popular JavaScript library used by
more than thirty-six thousand software programs to illustrate a common open source security
threat that leaves most programming languages vulnerable.®® Threat models for build tools,
package managers, and compilers are similar across languages, and the tech industry is long

57 Sible and Svoboda, supra note 48.

58 Garret Wassermann and David Svoboda, “Rust Vulnerability Analysis and Maturity Challenges,” Carnegie Mellon
University Software Engineering Institute, Jan. 23, 2023, https://insights.sei.cmu.edu/blog/rust-vulnerability-
analysis-and-maturity-challenges/.

5 Florian Roth [@cyb3rops], “Pwn the world mastodon.social/@Irvick/108274,” Twitter, May 10, 2022,
https://twitter.com/cyb3rops/status/1523979837769142273.

18

Security by Design Paper Series www.lawfaremedia.org

overdue for a systematic approach to mitigating inherent weaknesses in their governance that
make threats like this common.

‘mastodon

I just noticed “foreach" on npm is
controlled by a single maintainer.

| also noticed they let their personal
email domain expire, so | bought it
before someone else did.

I now control “foreach” on NPM, and the
36826 projects that depend on it.

Figure 4. An illustration of open source security risks.

When this weakness was discussed on social media in 2022, thousands of language libraries
were controlled by expired domains, including more than one thousand Rust libraries (crates).
Individuals decide on a case-by-case basis whether to react to threats like domain expirations,
and they can implement mitigation measures without oversight or transparency, ignore the risk
these threats pose to the entire industry, or take advantage of them for malicious purposes. A
trusted, publicly funded organization must address the collective action challenge of
programming languages like Rust by establishing funded standards for popular and promising
memory-safe language toolchains.

CISA has partnered with the OpenSSF working group to outline cybersecurity assessment
dimensions for open source package managers.”® The principles and scoring system the team
has come up with are a good start, and minimum standards for those scores that protect
consumers is what needs to follow. CISA should receive additional Open Source Trust funding to
support rapid, in-depth development of standards across package repositories, compilers, and
build tools, along with program management capabilities to collaborate with the stewards of
those tools, like the Rust Foundation, and to incentivize the work needed to satisfy CISA
standards.

U.S. Open source Library Verification Service

Mobile devices, operating systems, and cloud infrastructure can prevent more than half of their
security vulnerabilities by migrating to a memory-safe programming language, and early efforts
to make progress using Rust for those use cases have driven an incredible rate of growth in the

Rust ecosystem and maturity over the past five years. In 2019, there were just 400,000

70 Jack Cable and Zach Steindler, “Principles for Package Repository Security,” OpenSSF, February 2024,
https://repos.openssf.org/principles-for-package-repository-security.

19

Shane Miller, “Investing in Rust” JULY 2024

engineers worldwide using Rust,’* and there were only three paid maintainers working on the
compiler and standard library. Everything else was accomplished by open source community
volunteers. Engineers who wanted to build with Rust were struggling to learn the language and
make it work for their needs. Critical pieces of the Rust ecosystem were so incomplete that they
were unusable in production systems, and there were no reliable estimates of when that would
change. Only basic educational resources were available, and very few experts offered
mentoring and coaching.

In the five years since then, the Rust developer community has exploded nearly 800 percent to
3.5 million engineers.”? The Rust Foundation was launched in 2020 and is supported by more
than forty different corporations, and there are at least thirty full-time paid maintainers and
staff working on the Rust compiler, package manager, and standard library. More recently,
AdaCore announced plans to offer a certified and qualified Rust toolchain, contracts for service-
level agreements, and lifetime support for backported fixes. There are also a dozen small
businesses all over the globe offering consulting and training services for Rust development.
Rust has come a long way, but the tech industry is just taking its first steps on a multi-decade
journey to memory-safe software everywhere.

There are still substantial gaps in Rust that add cost, complexity, and risk to building with it, and
the mainstream market requires a whole product solution that’s easy to identify and trust.
Mainstream companies will not dig through thousands of tiny Rust libraries to find what they
need. They don’t want to have to review hundreds of strangers’ code for “unsafe Rust” and
evaluate its quality and security. They don’t want to have to worry about the security and
stability of updates to the Rust libraries they use. Mainstream companies will invest in
technologies they trust to deliver. Programming languages with low risk and complexity can be
trusted by technology manufacturers, and that can be achieved only with safe, stable core
language tools and easy verification of safe, supported language libraries.

Like most popular programming languages, Rust is a collection of open source projects built and
maintained by thousands of people over more than a decade, and like all open source software,
the Rust language and ecosystem are provided “as is,” with no warranty. Memory safety does
not absolve technology manufacturers’ responsibility to verify the security of third-party open
source dependencies, and the combination of Rust’s uniquely small libraries and immature
implementations exacerbates that challenge. Rust basic tools (like http and serialization) are
spread across many more independent libraries than in more mature languages, and Rust
engineers typically require a few hundred of these libraries for a single software project.”® That’s
far more open source libraries and authors to evaluate and manage than the typical Python

7Y Michael Carraz, et al., “State of the Developer Nation, 17th Edition,” SlashData, Oct. 22, 2019,
https://www.developernation.net/resources/reports/state-of-the-developer-nation-17th-q2-2019/.

72 liam Dodd, et al., “State of the Developer Nation, 25th Edition,” SlashData, Nov. 23, 2023,
https://www.developernation.net/resources/reports/state-of-the-developer-nation-25th-edition-q3-20231/.
73 “Motivation,” Cargo Vet, Mozilla, https://mozilla.github.io/cargo-vet/motivation.html.

20

Security by Design Paper Series www.lawfaremedia.org

program with only thirty-five dependencies.’* At the same time, fewer than 30 percent of the
most commonly used Rust libraries have a stable version with long-term (volunteer) support
available, and that ratio is growing by less than 2 percent annually. The additional complexity of
the Rust language demands that engineers do far more exploration, validation, and verification
than mature programming languages, and without a central, trusted authority, every technology
manufacturer must replicate that work.

While the Rust Foundation includes the entire Rust ecosystem in its bylaws, the core Rust
project is the only community represented on its board of directors, and it is the primary
recipient of all funding. None of the authors or maintainers of the 145,000 Rust language
libraries is represented or supported, and no organization offers a library verification service.
Private companies have failed to produce a market solution for Rust language entropy and
immaturity, because the demand for Rust is not big enough to support it today. Corporations
offering solutions for everything from open source analysis tools to package management
policies are waiting for Rust to cross the chasm into the mainstream before extending their
existing products to support Rust. At the same time, like any open source software, Rust is
susceptible to security and quality problems like malicious packages and negligence, and the
Rust Foundation’s security threat model gives high ratings to both severity and likelihood of a
malicious library attack.”

An initial investment needs to be made to protect technology manufacturers adopting Rust
now, even while it is not profitable for a corporation to do so, and the nonprofit Internet
Security Research Group (ISRG) has been working since 2020 to drive adoption of memory
safety by making some progress in this area. While ISRG has successfully captured more than
ten sponsors for the work to sustain and improve memory-safe software, they have barely
scratched the surface of what needs to be done. At the same time, the adoption of the work
completed by ISRG has been disappointing.

ISRG’s multiyear effort to transition curl, a prolific open source solution, to memory-safe http”®
is still unused years after the option was made available, and the software’s maintainer will
likely remove support for memory safety due to the lack of interest from their users.”” A
nonprofit like ISRG must use Open Source Trust funds to create a complete library verification
service that identifies, maintains, and hosts verified and validated memory-safe language
libraries that provide standard software solutions (like encryption and serialization), and the U.S
government must leverage tools like NIST’s secure software standards and frameworks to
encourage adoption of those memory-safe solutions.

74 “python Security Insights,” Snyk Report, September 2021, https://go.snyk.io/rs/677-THP-415/images/Python
Insight Report.pdf.

75 Rust Foundation, supra note 54.

76 Josh Aas, “Memory Safe ‘curl’ for a More Secure Internet,” Internet Security Research Group, Oct. 9, 2020,
https://www.abetterinternet.org/post/memory-safe-curl/.

7 Daniel Stenberg, “Hyper, Is It Worth 1t?”, curl, April 16, 2024, https://curl.se/mail/lib-2024-04/0021.html.

21

Shane Miller, “Investing in Rust” JULY 2024

CLOUD ANALOGY—WE CAN DO IT

Changing fundamentals like software architectures or programming languages is expensive,
but it can be done and has been done before. Researchers estimate the cost of the Y2K
remediation effort to have been between $300 and $600 billion,”® and cloud computing is
expected to increase 20.4 percent year over year to $678.8 billion in 2024.7° The transition to
cloud has been a massive migration effort for the technology industry.

To put the size of that migration in perspective, between 2010 and 2022, energy consumption
by cloud data centers increased 500 percent, while energy consumption by private data centers
decreased 75 percent.?9 That’s the result of migrating storage and compute from those legacy
data centers to the cloud driven by lower costs, shared responsibility, and greater flexibility
achieved by replacing legacy systems with modern implementations.

Cloud migration succeeded slowly at first, and early adopters were small and medium
businesses looking to lower the cost of entry into new markets and reduce business risks
associated with spikes in usage (like over- or underspending on infrastructure). Early adopters
like Netflix, Uber, and Airbnb didn’t have huge legacy systems that make cloud adoption
expensive, so they were able to get into the cloud quickly and cheaply. Larger, older companies
followed because of the business agility those early cloud-based companies achieved, making
the cloud the gold standard for software operations. As recently as 2016, leaders at top cloud
companies were asking whether large enterprises like multinational banks should or could
transition to the cloud, and by 2021, “more than 90 percent of banks [surveyed by the American
Bankers Association] stated that they maintain at least some data, applications, or operations in
the cloud.”®!

The cloud transition was boosted by large, early corporate investments in the U.S. government
as a customer. The first public cloud vendor, Amazon Web Services, launched a dedicated
government region in 2011,%2 many years before there was enough government demand for
cloud computing to make that investment profitable. Cloud providers believed that having U.S.
government agencies trust their data and services to the cloud makes large enterprises
comfortable doing the same, and historically, that has been true. Financial institutions, health

78 “y2K”, Smithsonian, https://www.si.edu/spotlight/y2k.

7% Gartner, “Gartner Forecasts Worldwide Public Cloud End-User Spending to Reach $679 Billion in 2024,” Nov. 13,
2023,
https://www.gartner.com/en/newsroom/press-releases/11-13-2023-gartner-forecasts-worldwide-public-cloud-
end-user-spending-to-reach-679-billion-in-20240.

80 |nternational Energy Agency, “Global Data Centre Energy Demand by Data Centre Type, 2010-2022,” June 2,
2020, https://www.iea.org/data-and-statistics/charts/global-data-centre-energy-demand-by-data-centre-type-
2010-2022.

81 U.S. Department of the Treasury, “The Financial Services Sector’s Adoption of Cloud Services,” Feb. 8, 2023,
https://home.treasury.gov/system/files/136/Treasury-Cloud-Report.pdf.

82 Dave Levy, “10 Years of Government Cloud Innovation With AWS GovCloud (US),” Amazon Web Services, Sept.
28, 2021, https://aws.amazon.com/blogs/publicsector/10-years-of-government-cloud-innovation-aws-govcloud-
us/.

22

Security by Design Paper Series www.lawfaremedia.org

care providers, and other critical infrastructure reference the U.S. government’s trust in cloud
computing security and reliability to satisfy their own requirements for cloud adoption. Cloud
migration is moving comfortably into the mainstream market this year, and Gartner predicts
that “by 2027, more than 70% of enterprises will use industry cloud platforms to accelerate
their business initiatives, up from less than 15% in 2023.”83 Investments like those made in
cloud computing could substantially speed up the memory-safe transition in a similar way.

CONCLUSION

Today, many technology manufacturers approach software development with short-term tactics
and often end up with long-term ownership of subpar products. Corporations are underwriting
unstable, fancy features with a line of credit, and customers are saddled with the security and
reliability consequences. In 2015, Gartner estimated the total global IT debt from technology
manufacturers “taking shortcuts, using basic techniques, not considering long-term
consequences [...], and delaying the upgrade of infrastructure” at $1 trillion, and Deloitte
described that cost as an “accumulation of financial liabilities.”* Adopting a memory-safe-by-
default approach to software development would dramatically improve customers’ experience
and security, slow the accumulation of new technical debt, and lower the cost of ownership for
technology manufacturers for the decades they are likely to operate and maintain business-
critical software.®

Most modern programming languages are memory-safe, and they share a common memory-
safety design®® that boosts speed-to-market at the cost of slower and more resource expensive
software. For example, JavaScript’s combination of consistency across web browsers and
support for dynamic features makes it the most widely used programming language, with 22.5
million active engineers (58 percent of all software engineers).8’” Similarly, Python’s dynamic
typing and simplified abstractions make it relatively easy to use and accessible to less traditional
software engineers like data scientists and security specialists. As a result, Python is in third
place, with 16.9 million active developers (43 percent of all software engineers).88

The productivity gains of legacy memory-safe languages have been a huge windfall for
cybersecurity, because they tap into the tech sector’s intense pressure to get new products to
market quickly. In an increasing returns market like technology, the first product to get ahead

8 Gartner, supra note 79.

84 Ranjan Sinha, Mohammed Arshad Hussain, Adib Ibrahim, et al., “Could the Cloud Be the Solution to Addressing
Technical Debt?” Deloitte, 2019,
https://www?2.deloitte.com/content/dam/Deloitte/xe/Documents/technology/me-consulting_technical-debt.pdf.
8 Phil Murphy, “New Jersey Needs COBOL Programmers,” YouTube, uploaded by Joseph Steinberg, April 4, 2020,
https://www.youtube.com/watch?v=HSVgHISTPYQ.

8 Zixian Cai, Stephen M. Blackburn, Michael D. Bond, and Martin Maas, “Distilling the Real Cost of Production
Garbage Collectors,” IEEE International Symposium on Performance Analysis of Systems and Software, 2022, pp.
46-57. doi: 10.1109/I1SPASS55109.2022.00005.

87 Dodd, supra note 72.

88 |bid.

23

Shane Miller, “Investing in Rust” JULY 2024

wins momentum that will move it further ahead. The technologies that can afford the additional
overhead of those older, resource-expensive, memory-safe languages have leveraged them to
build new features faster. At the same time, resource-constrained technologies like phones,
automobiles, and networks have primarily stayed locked in to memory-unsafe languages that
deliver the performance and optimizations those technologies require.

To fix this over-reliance on legacy memory-unsafe languages, several things are needed. The
current U.S. guidance on Chinese technical partnerships is contradictory and makes success
impossible for all stakeholders. The American tech community needs clear guidance and
governance of open collaborations with China. Government intervention is also required to
jump-start broad market adoption of memory safety everywhere. The Internet Defense Act
must establish a cloud computing tax to fund improvements to observability, governance, and
complexity for emerging memory-safe languages like Rust through the Open Source Trust. Public
investments can reduce risks to memory-safety adoption by providing:

e an addition to the critical infrastructure information technology sector,

e acloud computing tax to fund critical U.S. cyber defense,

e U.S.-sponsored governance for emerging cybersecurity solutions like Rust, and
e a U.S.-sponsored open source library verification service.

As CISA Director Jen Easterly said in her recent congressional testimony, “[C]ybersecurity is
national security” and “cyber risk is business risk.”®® The cadence of cyberattacks is increasing,
and technology manufacturers that fail to adopt cybersecurity best practices like memory safety
are putting their shareholders and customers at risk. Technology manufacturers must
proactively partner with U.S. government agencies to drive progress for our shared
responsibility to make all software memory-safe-by-default. Secure and stable memory-safe
programming languages can secure our critical infrastructure, protecting everything from our
natural resources to our national economy. Investing in Rust is good for the security of our
nation, and it’s good for business.

8 “Select Committee Hearing on China’s Cyber Threat to the U.S.,” C-SPAN, clipped by Jen Easterly, Jan. 31, 2024,
https://www.c-span.org/video/?c5104695/user-clip-jen-easterly.

24

