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Executive Summary 
 
Flow Computing is a revolutionary technology for boosting the performance of future processors 
and increasing the productivity of parallel software engineering over current processors. It can be 
applied widely to current processor technology as a parallel computing accelerator for CPUs or as 
a fully integrated next generation CPU. 
 
We provide this document to briefly summarize the design goals, organization, hardware advan-
tages and methodological benefits of Flow Computing technology.
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Summary of Flow Computing design 
goals and HW/SW advantages 
 
Flow Computing is a revolutionary technol-
ogy for boosting the performance of future 
processors and increasing the productivity 
of parallel software engineering over current 
processors. It can be applied widely to cur-
rent processor technology as a parallel com-
puting accelerator for CPUs or as a fully 
integrated next generation CPU. 
 
There are no detailed architecture publica-
tion of our patented Flow Computing tech-
nology integrating design principles, 
architectural and methodological aspects to 
a coherent presentation with respect to cur-
rent CPUs. We provide this document to 
briefly summarize the design goals, hard-
ware advantages and methodological bene-
fits of Flow Computing technology. 
 
Main design goals 
 
The main design goals of Flow Computing 
include (i) high performance in general pur-
pose parallel computing, (ii) increased soft-
ware engineering productivity for parallel 
functionalities while maintaining full back-
wards compatibility with the existing soft-
ware base and tools as well as (iii) flexibility 
/scalability that allows it to be applied widely 
to different use cases, instruction sets, pro-
cessor manufacturers and ICT 
devices/appliances. 
 
Experimental Flow Computing systems 
have been implemented with a parametric 
clock cycle and RTL-accurate software si-
mulator TPASim and a hardware instance of 
a 32-bit 6-FU 16-BE proof-of-concept has 
been realized on FPGA. According to our 
tests, the FPGA is giving identical results to 
the software simulator. 
 
We have made early performance, pro-
grammability and scalability tests with se-
lected Flow processor configurations 
[Forsell22, Forsell23a]. The results indicate 
that the goals (i) and (ii) as well as partially 
also (iii) appear to be achievable including 
our main value promise of being able to pro-
vide 100x performance boost over current 
systems. 
 
Organization of a Flow system 
 
A Flow superCPU consists of a CPU from 
our processor partner and an add-on Paral-
lel Processing Unit (PPU) that is attached to 
the CPU. To emphasize the different roles of 
superCPU components in fetching instruc-

tions and their main usage, CPU is called as 
Frontend or Sequential Processing Unit 
(SPU) and PPU is called Backend. Both SPU 
and PPU will have internal cache memory. A 
Flow system consists of a superCPU and 
memory system (see Figure 1). Since the 
PPU speeds up the system by a large mar-
gin, most system designers want to in-
crease the memory bandwidth. 
  
Hardware advantages 
 
To highlight the hardware advantages of 
Flow over traditional SMP/NUMA CPU (and 
GPU) computing, let us have a more detailed 
look at a number of differences between 
them (with 10 first illustrated in Figure 2): 
  
1. Nonexistent cache coherence issues. 
Unlike in current CPU systems, in Flow’s ar-
chitecture there are no cache coherence is-
sues in the memory systems due to the 
memory organization excluding caches in 
the front of the intercommunication net-
work [Forsell16a]. 
 
2. Cost efficient synchronization. Flow syn-
chronization cost is roughly 1/Tb (Tb=fibers 
per PPU core) [Forsell23a] whereas in 
SMP/NUMA CPU systems it can be hun-
dreds to thousands of clock cycles [For-
sell22, Forsell23a] and in GPUs it can be 
from thousands to hundreds of thousands 
of clock cycles [Zhang20]. 
 
3. Support for parallel computing primi-
tives. Flow’s architecture provides unique 
and specific techniques/solutions for ex-
ecuting concurrent memory access (both 
read and write) operations [Forsell18a], 
multi-operations for executing reductions 
[Forsell23b], multi-prefix operations [For-
sell23b], compute-update operations [For-
sell20] and fiber mapping operations 
[Forsell18b] in the most efficient manner 
possible. These primitives are not available 
in current CPUs. Implementing these primi-
tives in Flow Computing involves active 
memory technologies in the SRAM-based 
on-chip shared cache level providing poten-
tially better performance and greater flex-
ibility than current DRAM-based processing 
in memory (PIM) solutions, but not prevent-
ing the use of both techniques in the same 
design. 
 
4. Flexible threading/fibering scheme. 
Flow Computing technology allows an un-
bounded number of fibers at the model 
level, which can also be supported in hard-
ware (within certain bandwidth constraints). 
In current-generation CPUs, the number of 



threads is - in theory - not bounded, but if the 
number of hardware threads is exceeded in 
the case of interdependencies, the results 
can be very bad [Forsell22, Forsell23a]. In 
addition, the operating systems typically 
limit the number of threads to a few thou-
sand at most. The mapping of fibers to 
backend units is a programmable function 
allowing further performance improve-
ments in Flow [Forsell18b]. 
 
5. Low-level parallelism for dependent op-
erations. In Flow-enabled CPUs, it is possi-
ble to execute dependent operations with 
the full utilization within a step (with the help 
of chaining of functional units),  whereas in 
current CPUs the operations executed in 

parallel need to be independent due to par-
allel organization of the functional units [For-
sell02]. 
 
6. Non-existent context switching cost. In 
Flow-enabled CPUs, the fiber switching 
cost is zero whereas in current CPUs it is 
more than 100 clock cycles [DEDICAT23]. 
7. Intercommunication traffic congestion 
avoidance. In Flow-enabled CPUs, the prob-
ability of inter-communication network traf-
fic congestion is low due to hardware 
support for hashing, concurrent memory ac-
cess, multi-operations and multi-prefix op-
erations. In current CPUs, congestion can 
happen frequently if the access patterns are 
non-trivial [Forsell23a]. 

8. Scalable latency tolerance. Flow’s tech-
nology provides a scalable latency hiding 
mechanism for constellations up to thou-
sands of backend units, whereas in current 
CPUs the latency tolerance (with snoop-
ing/directory-based cache coherence main-
tenance mechanisms) appears to be 
relatively weakly scalable [Forsell23a]. 
There is also evidence that in high-end 
Flow-enabled systems, even the latency of 
DRAM -based memory systems can be hid-
den in many cases with suitable memory or-
ganization and sufficient bandwidth 
[Forsell10]. 
 
9. No need for locality-maximizing memory 
data partitioning. Flow-enabled CPUs are 

White Paper 
Design goals, advantages and benefits of Flow Computing

3

ARM, x86,
POWER or
RISC-V
Integer
Core

L1 I-Cache

L2 Cache

L1 D-Cache

SIMD

FPU

MMU MULTICORE
PARALLEL

PROCESSING
UNIT

Optional
GPU,
NPU

On-Chip
Synchronous
Distributed
Shared

L1/L2 Cache

Shared L3 Cache + External Memory System

CPU from our processor partner
SPU

"FRONTEND"

CPU accelerator
PPU

"BACKEND"

CPU
"SuperCPU"

Figure 1. Flow superCPU.

                                                100x performance boost for parallel functionalities 
       5x less active code lines

M
ultip

le 

cores



White Paper 
Design goals, advantages and benefits of Flow Computing

4

not prone to alternative memory partitioning 
schemes, such as interleaving, hashing, 
stacking and blocking, whereas current 
CPUs are highly-sensitive to data placement 
[Forsell23a]. 
 
10. Sufficient intercommunication band-
width. Flow’s PPU has an intercommunica-
tion network that is designed to provide 
sufficient bandwidth for random communi-
cation, whereas current CPUs are limited 
only to cases where most references are 
local [Forsell23a]. This kind of locality maxi-
mization is not always possible since in the 
general case there is no algorithm to maxi-
mize locality. 
 
11. Dual unit organization. Current multicore 
CPUs were built by replicating processors 
originally designed for sequential computing 
and therefore optimized for low latency 
[Bloch59, Tomasulo67, Forsell96]. As a re-
sult, they are relatively good for executing 
sequential workloads but have substantial 
performance issues with non-trivial parallel 
functionalities. 
 
To support high-speed execution of parallel 
code, Flow introduces the PPU that utilizes 
the slack of parallelism to reorganize opera-

tions so that the requirement for low-latency 
is turned to the need for high throughput 
[Forsell02, Forsell16b] and combines it with 
a CPU. 
 
The resulting dual unit CPU-PPU combines 
the best of both worlds to achieve the best 
performance for modern workloads con-
taining a lot of parallelism but also some se-
quential parts while providing backwards 
compatibility via the CPU. 
 
12. Minimal disadvantages of superpipelin-
ing while having all benefits of that and full 
support for long latency, floating point and 
application-specific operations. Flow 
Computing PPU is a fully superpipelined de-
sign with regular structure and patented 
support for long-latency operations, floating 
point operations and optional application-
specific operations [Forsell02, Forsell16b, 
Forsell18c, Forsell19]. In current CPUs, su-
perpipelining increases the degree of pipe-
line delays that may cannibalize the 
performance benefits. 
 
13. Parametric design and instruction set 
independency. Flow is not limited to single 
instances only, as it features parametric 
blocks with design time adjustable numbers 

of CPU cores, numbers of PPU cores, 
numbers and types of functional units per 
PPU core, size and organization of step 
caches, scratchpads, on-chip shared 
caches, latency compensation unit length, 
instruction set etc. Current CPU designs are 
typically tied to certain instruction sets and 
may require partial redesign if these kinds of 
parameters are altered. 
 
14. Support for the key patterns of parallel 
computation. Flow supports the key pat-
terns of parallel computation, such as paral-
lel execution, reduction, spreading and 
permutation [Forsell23c]. Current-genera-
tion CPUs support only the parallel ex-
ecution pattern. 
 
Methodological benefits 
 
At the methodological side, the main bene-
fits include: 
 
A. Backwards compatibility with the exist-
ing software base. The Flow technology 
uses a dual unit organization dividing the 
hardware to relatively tightly-coupled fron-
tend (FE) and backend (BE) units. The 
former are aimed for executing sequential 
parts of the code (control of TCFs, base ad-
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dress computation) and parts that do not 
have enough parallelism for efficient ex-
ecution in the backend. The frontend de-
signs are provided by our processor 
partners and therefore provide full back-
wards compatibility with the existing soft-
ware base and tools. The PPU processing 
elements execute the individual parallel 
fibers of the code. Many new architectural 
innovations are not able to provide back-
wards compatibility. 
 
B. Well-founded theory of parallel algo-
rithms. Flow supports the Parallel Random 
Access Machine -style model of computa-
tion [Fortune78, Forsell13] featuring a well-
founded and implementation-independent 
theory of parallel algorithms [Jaja92, 
Keller01]. This is not directly applicable to 
current CPUs or GPUs which require much 
more architecture and configuration de-
pendent theories. The TCF model, merging 
together homogeneous threads flowing 
through the same control path [Lep-
pänen11], simplifies further programming of 
parallel functionalities, eliminates unnec-
essary replication of hardware and data, as 
well as serves as a central model from which 
many of the existing models and be de-
duced [Forsell13]. 

C. Well-defined state of computation. In 
Flow systems, the state of computation is 
well-defined due to synchrony of executed 
fibers and strict memory consistency 
whereas in current CPUs and GPUs ex-
ecution of threads is intrinsically asynchro-
nous and memories are weaker 
implementing relaxed consistency. The well 
defined state simplifies programming, 
makes it less error-prone and helps in verifi-
cation of correctness. 
 
D. Greatly simplified programming of par-
allel functionalities. Usage of Flow Comput-
ing technology greatly simplifies 
programming compared to current CPUs 
and GPUs since unlike in them (i) most ex-
plicit synchronizations can be eliminated 
due to inherently synchronous execution of 
fibers, (ii) in many cases, looping is not 
needed to match the software to the avail-
able hardware threads, (iii) in many cases 
there is no need for maximizing the locality 
of data references, and (iv) there is no need 
to create/terminate fibers while the degree 
of parallelism can be adjusted dynamically 
according to needs of the executed algo-
rithm [Forsell22, Forsell23a]. 
  
 

E. Plans for a step-wise migration path. We 
plan to provide a four-step migration path 
from popular parallel computing methodolo-
gies to full-fledged Flow Computing (see 
Figure 3): (i) Flow systems will provide full bi-
nary-level backwards compatibility with the 
existing software base and tools with cur-
rent performance level via the frontend. (ii) If 
the current programs are recompiled for the 
Flow system with our compiler (currently 
under development), the compiler rec-
ognizes patterns that can easily be targeted 
for backend execution and compiles the 
code accordingly leading to increased per-
formance. We plan to port a set of key li-
braries to utilize Flow Computing so that if 
the programs employs them, it will have 
further performance boost. (iii) We aim to 
provide a tool for helping migration by rec-
ognizing additional patterns that can be po-
tentially executed in the backend with a help 
of the programmer. (iv) Full performance 
and simplicity of native and natural parallel 
programming can be achieved if the applica-
tion is written for the Flow system from the 
beginning. This simplifies greatly the parallel 
parts of the program. Utilizing this for future 
software development (and high school/uni-
versity education) improves the productivity 
of software engineering and makes usage of 

Figure 3. Stepwise migration from current multicore software base to full exploitation of Flow Computing.
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i   pthreads_attr_init(&attr); 
ii  pthreads_attr_setdetachstate(&attr, 
       PTHREADS_CREATE_JOINABLE); 
iii  for (t=0; t<NUM_THREADS;t++) 
iv        rc=pthreads_create(&thread[t], 
                  &attr,Add_Array,(void *)t); 
 
                                                                    
1  blocksize=SIZE/NUM_THREADS; 
2  start = tid*blocksize; 
3  stop = start + blocksize; 
4  for (id=start; id<stop; id+=gap) 
5     A[id]+=B[id]; 
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i   pthreads_attr_destroy(&attr); 
ii  for (t=0; t<NUM_THREADS;t++) 
iii     c=pthreads_join(thread[t],&status); 

i   pthreads_attr_init(&attr); 
ii  pthreads_attr_setdetachstate(&attr, 
       PTHREADS_CREATE_JOINABLE); 
iii  for (t=0; t<NUM_THREADS;t++) 
iv        rc=pthreads_create(&thread[t], 
                  &attr,Add_Array,(void *)t); 
 
                                                                    
1  blocksize=SIZE/NUM_THREADS; 
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5      A[id]+=B[id]; 
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i   pthreads_attr_destroy(&attr); 
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1  if (tid==0) 
2      A_[$]+=B_[$]; 
 
 
 
i   pthreads_attr_destroy(&attr); 
ii  for (t=0; t<NUM_THREADS;t++) 
iii     c=pthreads_join(thread[t],&status); 
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explicit parallel algorithms available also for 
average programmers. 
 
F. Possibility for special optimizations. If re-
quired for performance or efficiency rea-
sons, it is also possible to switch off the 
hashing of memory addresses, step-wise 
synchronization and bound the thickness of 
TCFs for traditional locality-optimized 
NUMA computation. The hashing is de-
signed so that hashed and non-hashed 
memory regions can co-exist in the same 
memory space. 
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