
1

Executive Summary

Flow Computing is a revolutionary technology for boosting the performance of future processors
and increasing the productivity of parallel software engineering over current processors. It can be
applied widely to current processor technology as a parallel computing accelerator for CPUs or as
a fully integrated next generation CPU.

We provide this document to briefly summarize the design goals, organization, hardware advan-
tages and methodological benefits of Flow Computing technology.

Martti Forsell
CTO, Chief Architect

Flow-computing

Design goals, advantages and
benefits of Flow Computing

White Paper
Design goals, advantages and benefits of Flow Computing

2

Table of Contents

Summary of Flow Computing design goals

and HW/SW advantages.......................... 2

Main design goals.................................... 2

Organization of a Flow system............... 2

Hardware advantages............................ 2

 1. Nonexistent cache coherence issues 2

 2. Cost efficient synchronization........... 2

 3. Support for parallel computing primi-

tives ... 2

 4. Flexible threading/fibering scheme.. 2

 5. Low-level parallelism for dependent

operations.. 3

 6. Non-existent context switching

cost... 3

 7. Intercommunication traffic congestion

avoidance... 3

 8. Scalable latency tolerance................. 3

 9. No need for locality-maximizing mem-

ory data partitioning................................ 3

 10. Sufficient intercommunication band-

width.. 4

 11. Dual unit organization......................... 4

 12. Minimal disadvantages of superpipe-

lining while having all benefits of that and

full support for long latency, floating point

and application-specific opera-

tions... 4

 13. Parametric design and instruction set

independency... 4

 14. Support for the key patterns of parallel

computation.. 4

Methodological benefits.......................... 4

 A. Backwards compatibility with the ex-

isting software base............................... 4

 B. Well-founded theory of parallel algo-

rithms... 5

 C. Well-defined state of computa-

tion.. 5

 D. Greatly simplified programming of par-

allel functionalities.................................. 5

 E. Plans for a step-wise migration

path... 5

 F. Possibility for special optimiza-

tions.. 6

References... 6

Summary of Flow Computing design
goals and HW/SW advantages

Flow Computing is a revolutionary technol-
ogy for boosting the performance of future
processors and increasing the productivity
of parallel software engineering over current
processors. It can be applied widely to cur-
rent processor technology as a parallel com-
puting accelerator for CPUs or as a fully
integrated next generation CPU.

There are no detailed architecture publica-
tion of our patented Flow Computing tech-
nology integrating design principles,
architectural and methodological aspects to
a coherent presentation with respect to cur-
rent CPUs. We provide this document to
briefly summarize the design goals, hard-
ware advantages and methodological bene-
fits of Flow Computing technology.

Main design goals

The main design goals of Flow Computing
include (i) high performance in general pur-
pose parallel computing, (ii) increased soft-
ware engineering productivity for parallel
functionalities while maintaining full back-
wards compatibility with the existing soft-
ware base and tools as well as (iii) flexibility
/scalability that allows it to be applied widely
to different use cases, instruction sets, pro-
cessor manufacturers and ICT
devices/appliances.

Experimental Flow Computing systems
have been implemented with a parametric
clock cycle and RTL-accurate software si-
mulator TPASim and a hardware instance of
a 32-bit 6-FU 16-BE proof-of-concept has
been realized on FPGA. According to our
tests, the FPGA is giving identical results to
the software simulator.

We have made early performance, pro-
grammability and scalability tests with se-
lected Flow processor configurations
[Forsell22, Forsell23a]. The results indicate
that the goals (i) and (ii) as well as partially
also (iii) appear to be achievable including
our main value promise of being able to pro-
vide 100x performance boost over current
systems.

Organization of a Flow system

A Flow superCPU consists of a CPU from
our processor partner and an add-on Paral-
lel Processing Unit (PPU) that is attached to
the CPU. To emphasize the different roles of
superCPU components in fetching instruc-

tions and their main usage, CPU is called as
Frontend or Sequential Processing Unit
(SPU) and PPU is called Backend. Both SPU
and PPU will have internal cache memory. A
Flow system consists of a superCPU and
memory system (see Figure 1). Since the
PPU speeds up the system by a large mar-
gin, most system designers want to in-
crease the memory bandwidth.

Hardware advantages

To highlight the hardware advantages of
Flow over traditional SMP/NUMA CPU (and
GPU) computing, let us have a more detailed
look at a number of differences between
them (with 10 first illustrated in Figure 2):

1. Nonexistent cache coherence issues.
Unlike in current CPU systems, in Flow’s ar-
chitecture there are no cache coherence is-
sues in the memory systems due to the
memory organization excluding caches in
the front of the intercommunication net-
work [Forsell16a].

2. Cost efficient synchronization. Flow syn-
chronization cost is roughly 1/Tb (Tb=fibers
per PPU core) [Forsell23a] whereas in
SMP/NUMA CPU systems it can be hun-
dreds to thousands of clock cycles [For-
sell22, Forsell23a] and in GPUs it can be
from thousands to hundreds of thousands
of clock cycles [Zhang20].

3. Support for parallel computing primi-
tives. Flow’s architecture provides unique
and specific techniques/solutions for ex-
ecuting concurrent memory access (both
read and write) operations [Forsell18a],
multi-operations for executing reductions
[Forsell23b], multi-prefix operations [For-
sell23b], compute-update operations [For-
sell20] and fiber mapping operations
[Forsell18b] in the most efficient manner
possible. These primitives are not available
in current CPUs. Implementing these primi-
tives in Flow Computing involves active
memory technologies in the SRAM-based
on-chip shared cache level providing poten-
tially better performance and greater flex-
ibility than current DRAM-based processing
in memory (PIM) solutions, but not prevent-
ing the use of both techniques in the same
design.

4. Flexible threading/fibering scheme.
Flow Computing technology allows an un-
bounded number of fibers at the model
level, which can also be supported in hard-
ware (within certain bandwidth constraints).
In current-generation CPUs, the number of

threads is - in theory - not bounded, but if the
number of hardware threads is exceeded in
the case of interdependencies, the results
can be very bad [Forsell22, Forsell23a]. In
addition, the operating systems typically
limit the number of threads to a few thou-
sand at most. The mapping of fibers to
backend units is a programmable function
allowing further performance improve-
ments in Flow [Forsell18b].

5. Low-level parallelism for dependent op-
erations. In Flow-enabled CPUs, it is possi-
ble to execute dependent operations with
the full utilization within a step (with the help
of chaining of functional units), whereas in
current CPUs the operations executed in

parallel need to be independent due to par-
allel organization of the functional units [For-
sell02].

6. Non-existent context switching cost. In
Flow-enabled CPUs, the fiber switching
cost is zero whereas in current CPUs it is
more than 100 clock cycles [DEDICAT23].
7. Intercommunication traffic congestion
avoidance. In Flow-enabled CPUs, the prob-
ability of inter-communication network traf-
fic congestion is low due to hardware
support for hashing, concurrent memory ac-
cess, multi-operations and multi-prefix op-
erations. In current CPUs, congestion can
happen frequently if the access patterns are
non-trivial [Forsell23a].

8. Scalable latency tolerance. Flow’s tech-
nology provides a scalable latency hiding
mechanism for constellations up to thou-
sands of backend units, whereas in current
CPUs the latency tolerance (with snoop-
ing/directory-based cache coherence main-
tenance mechanisms) appears to be
relatively weakly scalable [Forsell23a].
There is also evidence that in high-end
Flow-enabled systems, even the latency of
DRAM -based memory systems can be hid-
den in many cases with suitable memory or-
ganization and sufficient bandwidth
[Forsell10].

9. No need for locality-maximizing memory
data partitioning. Flow-enabled CPUs are

White Paper
Design goals, advantages and benefits of Flow Computing

3

ARM, x86,
POWER or
RISC-V
Integer
Core

L1 I-Cache

L2 Cache

L1 D-Cache

SIMD

FPU

MMU MULTICORE
PARALLEL

PROCESSING
UNIT

Optional
GPU,
NPU

On-Chip
Synchronous
Distributed
Shared

L1/L2 Cache

Shared L3 Cache + External Memory System

CPU from our processor partner
SPU

"FRONTEND"

CPU accelerator
PPU

"BACKEND"

CPU
"SuperCPU"

Figure 1. Flow superCPU.

 100x performance boost for parallel functionalities
 5x less active code lines

M
ultip

le

cores

White Paper
Design goals, advantages and benefits of Flow Computing

4

not prone to alternative memory partitioning
schemes, such as interleaving, hashing,
stacking and blocking, whereas current
CPUs are highly-sensitive to data placement
[Forsell23a].

10. Sufficient intercommunication band-
width. Flow’s PPU has an intercommunica-
tion network that is designed to provide
sufficient bandwidth for random communi-
cation, whereas current CPUs are limited
only to cases where most references are
local [Forsell23a]. This kind of locality maxi-
mization is not always possible since in the
general case there is no algorithm to maxi-
mize locality.

11. Dual unit organization. Current multicore
CPUs were built by replicating processors
originally designed for sequential computing
and therefore optimized for low latency
[Bloch59, Tomasulo67, Forsell96]. As a re-
sult, they are relatively good for executing
sequential workloads but have substantial
performance issues with non-trivial parallel
functionalities.

To support high-speed execution of parallel
code, Flow introduces the PPU that utilizes
the slack of parallelism to reorganize opera-

tions so that the requirement for low-latency
is turned to the need for high throughput
[Forsell02, Forsell16b] and combines it with
a CPU.

The resulting dual unit CPU-PPU combines
the best of both worlds to achieve the best
performance for modern workloads con-
taining a lot of parallelism but also some se-
quential parts while providing backwards
compatibility via the CPU.

12. Minimal disadvantages of superpipelin-
ing while having all benefits of that and full
support for long latency, floating point and
application-specific operations. Flow
Computing PPU is a fully superpipelined de-
sign with regular structure and patented
support for long-latency operations, floating
point operations and optional application-
specific operations [Forsell02, Forsell16b,
Forsell18c, Forsell19]. In current CPUs, su-
perpipelining increases the degree of pipe-
line delays that may cannibalize the
performance benefits.

13. Parametric design and instruction set
independency. Flow is not limited to single
instances only, as it features parametric
blocks with design time adjustable numbers

of CPU cores, numbers of PPU cores,
numbers and types of functional units per
PPU core, size and organization of step
caches, scratchpads, on-chip shared
caches, latency compensation unit length,
instruction set etc. Current CPU designs are
typically tied to certain instruction sets and
may require partial redesign if these kinds of
parameters are altered.

14. Support for the key patterns of parallel
computation. Flow supports the key pat-
terns of parallel computation, such as paral-
lel execution, reduction, spreading and
permutation [Forsell23c]. Current-genera-
tion CPUs support only the parallel ex-
ecution pattern.

Methodological benefits

At the methodological side, the main bene-
fits include:

A. Backwards compatibility with the exist-
ing software base. The Flow technology
uses a dual unit organization dividing the
hardware to relatively tightly-coupled fron-
tend (FE) and backend (BE) units. The
former are aimed for executing sequential
parts of the code (control of TCFs, base ad-

FLOW superCPU

Sync cost 1/Tb

No coherency
issues

LLP for dependent
ops also

Primitives
supported

Flexible T

Fiber switch
cost = 0

Low congestion
probability

Scalable
latency hiding

Low probability of
insufficient bandwidth

No need for
partitioning

MULTICORE SMP/NUMA CPU

Sync cost >100

Coherency
maintenance
expensive

LLP for
independent
ops only

Primitives not
supported

Thread switch
cost >100

Congestion

Latency tolerance
poorly scalable

Bandwidth <P

Partitioning needed
for good

performance

Fixed P

10 ARCHITECTURAL DIFFERENCES

FRONTENDS (SPUs)

BACKENDS (PPUs)

Figure 2. Architectural differences current multicore SMP/NUMA CPUs and Flow superCPU systems.

White Paper
Design goals, advantages and benefits of Flow Computing

5

dress computation) and parts that do not
have enough parallelism for efficient ex-
ecution in the backend. The frontend de-
signs are provided by our processor
partners and therefore provide full back-
wards compatibility with the existing soft-
ware base and tools. The PPU processing
elements execute the individual parallel
fibers of the code. Many new architectural
innovations are not able to provide back-
wards compatibility.

B. Well-founded theory of parallel algo-
rithms. Flow supports the Parallel Random
Access Machine -style model of computa-
tion [Fortune78, Forsell13] featuring a well-
founded and implementation-independent
theory of parallel algorithms [Jaja92,
Keller01]. This is not directly applicable to
current CPUs or GPUs which require much
more architecture and configuration de-
pendent theories. The TCF model, merging
together homogeneous threads flowing
through the same control path [Lep-
pänen11], simplifies further programming of
parallel functionalities, eliminates unnec-
essary replication of hardware and data, as
well as serves as a central model from which
many of the existing models and be de-
duced [Forsell13].

C. Well-defined state of computation. In
Flow systems, the state of computation is
well-defined due to synchrony of executed
fibers and strict memory consistency
whereas in current CPUs and GPUs ex-
ecution of threads is intrinsically asynchro-
nous and memories are weaker
implementing relaxed consistency. The well
defined state simplifies programming,
makes it less error-prone and helps in verifi-
cation of correctness.

D. Greatly simplified programming of par-
allel functionalities. Usage of Flow Comput-
ing technology greatly simplifies
programming compared to current CPUs
and GPUs since unlike in them (i) most ex-
plicit synchronizations can be eliminated
due to inherently synchronous execution of
fibers, (ii) in many cases, looping is not
needed to match the software to the avail-
able hardware threads, (iii) in many cases
there is no need for maximizing the locality
of data references, and (iv) there is no need
to create/terminate fibers while the degree
of parallelism can be adjusted dynamically
according to needs of the executed algo-
rithm [Forsell22, Forsell23a].

E. Plans for a step-wise migration path. We
plan to provide a four-step migration path
from popular parallel computing methodolo-
gies to full-fledged Flow Computing (see
Figure 3): (i) Flow systems will provide full bi-
nary-level backwards compatibility with the
existing software base and tools with cur-
rent performance level via the frontend. (ii) If
the current programs are recompiled for the
Flow system with our compiler (currently
under development), the compiler rec-
ognizes patterns that can easily be targeted
for backend execution and compiles the
code accordingly leading to increased per-
formance. We plan to port a set of key li-
braries to utilize Flow Computing so that if
the programs employs them, it will have
further performance boost. (iii) We aim to
provide a tool for helping migration by rec-
ognizing additional patterns that can be po-
tentially executed in the backend with a help
of the programmer. (iv) Full performance
and simplicity of native and natural parallel
programming can be achieved if the applica-
tion is written for the Flow system from the
beginning. This simplifies greatly the parallel
parts of the program. Utilizing this for future
software development (and high school/uni-
versity education) improves the productivity
of software engineering and makes usage of

Figure 3. Stepwise migration from current multicore software base to full exploitation of Flow Computing.

USE WITHOUT
ANY CHANGES

Binaries execute
in the SPU without

modifications

RECOMPILE
Compiler recognizes

parallel parts and
transforms and assigns

them for the PPU

REFACTOR
CRITICAL PARTS

Bottlenecks and critical
parts assigned

explicitly to the PPU

REWRITE
Explicitly parallel:

Executes parallel parts
in the PPU, the rest of
the code in the SPU

Higher performance

Initialization

Thread creation

Divide data into core-wise blocks

Match SW parallelism to HW units
Parallel functionality
Synchronize

Thread termination

i pthreads_attr_init(&attr);
ii pthreads_attr_setdetachstate(&attr,
 PTHREADS_CREATE_JOINABLE);
iii for (t=0; t<NUM_THREADS;t++)
iv rc=pthreads_create(&thread[t],
 &attr,Add_Array,(void *)t);

1 blocksize=SIZE/NUM_THREADS;
2 start = tid*blocksize;
3 stop = start + blocksize;
4 for (id=start; id<stop; id+=gap)
5 A[id]+=B[id];
6 Synchronize;

i pthreads_attr_destroy(&attr);
ii for (t=0; t<NUM_THREADS;t++)
iii c=pthreads_join(thread[t],&status);

i pthreads_attr_init(&attr);
ii pthreads_attr_setdetachstate(&attr,
 PTHREADS_CREATE_JOINABLE);
iii for (t=0; t<NUM_THREADS;t++)
iv rc=pthreads_create(&thread[t],
 &attr,Add_Array,(void *)t);

1 blocksize=SIZE/NUM_THREADS;
2 start = tid*blocksize;
3 stop = start + blocksize;
4 for (id=start; id<stop; id+=gap)
5 A[id]+=B[id];
6 Synchronize;

i pthreads_attr_destroy(&attr);
ii for (t=0; t<NUM_THREADS;t++)
iii c=pthreads_join(thread[t],&status);

ii pthreads_attr_init(&attr);
ii pthreads_attr_setdetachstate(&attr,
 PTHREADS_CREATE_JOINABLE);
iii for (t=0; t<NUM_THREADS;t++)
iv rc=pthreads_create(&thread[t],
 &attr,Add_Array,(void *)t);

1 if (tid==0)
2 A_[$]+=B_[$];

i pthreads_attr_destroy(&attr);
ii for (t=0; t<NUM_THREADS;t++)
iii c=pthreads_join(thread[t],&status);

1 A_[$]+=B_[$];

Transformed to:
1 if (tid==0)
2 A_[$]+=B_[$];

Helper tool
to recognize
critical
SW parts

Same SW paradigm and tools as currently being used — E.g. C, Pthreads,...
 — All existing parallel SW and applications work with improved performance

Matrix addition
in parallel

White Paper
Design goals, advantages and benefits of Flow Computing

6

explicit parallel algorithms available also for
average programmers.

F. Possibility for special optimizations. If re-
quired for performance or efficiency rea-
sons, it is also possible to switch off the
hashing of memory addresses, step-wise
synchronization and bound the thickness of
TCFs for traditional locality-optimized
NUMA computation. The hashing is de-
signed so that hashed and non-hashed
memory regions can co-exist in the same
memory space.

REFERENCES

[Bloch59] E. Bloch, The engineering design
of the Stretch computer, Proc. of the Fall
Joint Computer Conference, 1959, 48-59.
[DEDICAT23] A. Anttonen, Y. Carlinet, P.
Demestichas, M. Forsell, V. Lamprousi, G.
Lecker Ricardo, K. Mößner, N. Perrot and V.
Stavroulaki, Reinout Eyckerman, Phil Reiter
and J. Yang, Deliverable D3.3 "Final release
and lab test report of mechanisms for dy-
namic distribution of intelligence", Dynamic
coverage Extension and Distributed Intelli-
gence for human Centric Applications with
assured security, privacy and Trust: from 5G
to 6G (DEDICAT 6G), 2023. To appear in
https://dedicat6g.eu/results/deliverables/.
[Forsell96] M. Forsell, Minimal Pipeline Ar-
chitecture-an Alternative to Superscalar Ar-
chitecture, Microprocessors and
Microsystems 20, 5 (1996), 277-284.
[Forsell02] M. Forsell, Architectural differ-
ences of efficient sequential and parallel
computers, Journal of Systems Architec-
ture 47, 13 (July 2002), 1017-1041.
[Forsell10] M. Forsell, Performance compar-
ison of some shared memory organizations
for 2D mesh-like NOCs, Microprocessors
and Microsystems 35, 2 (March 2011), 274-
284.
[Forsell13] M. Forsell and V. Leppänen, An
Extended PRAM-NUMA Model of Com-
putation for TCF Programming, Int. Journal
of Networking and Computing 3, 1 (2013),
98-115.
[Forsell16a] M. Forsell, J. Roivainen and V.
Leppänen, The REPLICA on-chip network,
In the Proceeding of the 2016 IEEE Nordic
Circouts and Systems Conference (NOR-
CAS’16), November 1-2, 2016, Copenhagen,
Denmark.
[Forsell16b] M. Forsell, J. Roivainen and V.
Leppänen, Outline of a Thick Control Flow
Architecture, In the Proceedings of the 5th
Workshop on Parallel Programming Models
Special Edition on Task Parallelism, October
26-28, 2016, Marina del Rey Marriott, Los
Angeles, USA.

[Forsell18a] M. Forsell, J. Roivainen, V. Lep-
pänen and J. Träff, Supporting Concurrent
Memory Access in TCF
Processor Architectures, Microprocessors
and Microsystems 63, November 2018,
226-236.
[Forsell18b] M. Forsell, Flexible Fibering
Scheme for Thick Control Flow Processors,
In the Proceedings of the 24th Int’l Conf on
Parallel and Distributed Processing Tech-
niques and Applications (PDPTA’18), July
30-August 2, 2018, Las Vegas, USA.
[Forsell18c] M. Forsell, Architecture for
Long Latency Operations in Emulated
Shared Memory Architectures, US Patent
10127048B2, November 13, 2018.
[Forsell19] M. Forsell, Floating-point sup-
portive pipeline for emulated shared mem-
ory architectures, European patent
EP2866138B1 (Germany, France, UK, Italy),
August 7, 2019
[Forsell20] M. Forsell, J Roivainen and J.
Träff, Optimizing Memory Access in TCF
Processors with Compute-Update Opera-
tions, In the Proceedings of 22nd Workshop
on Advances in Parallel and Distributed
Computational Models (APDCM’20) in con-
junction with the 33rd IEEE International
Parallel and Distributed Processing Sympo-
sium (IPDPS’20), May 18 – 22, 2020, New
Orleans, Louisiana, USA.
[Forsell22] M. Forsell, S. Nikula, J. Roi-
vainen, V. Leppänen and J. L. Träff, Perform-
ance and Programmability
Comparison of the Thick Control Flow Ar-
chitecture and Current Multicore Proces-
sors, Journal of
Supercomputing 78, 3 (2022), 3152-3183.
https://doi.org/10.1007/s11227-021-03985-0
[Forsell23a] M. Forsell, J. Roivainen, V. Lep-
pänen and J. L. Träff, Preliminary Perform-
ance and Memory Access Scalability Study
of Thick Control Flow Processors, In the
Proceedings of 2023 IEEE Nordic Circuits
and Systems Conference (IEEE NOR-
CAS'23), October 31 - November 1, 2023,
Aalborg, Denmark.
[Forsell23b] M. Forsell, J. Roivainen, V. Lep-
pänen and J. L. Träff, Realizing Multiopera-
tions and Multiprefixes in Thick Control Flow
Processors, Microprocessors and Micro-
systems 98, April 2023.
https://doi.org/10.1016/j.micpro.2023.10480
7
[Forsell23c] M. Forsell, Overview of the
Flow-computing technology, White Paper,
VTT, April 2023.
[Fortune78] S. Fortune and J. Wyllie, Paral-
lelism in Random Access Machines, Proc.
10th ACM STOC, Association for Comput-
ing Machinery, New York, 1978, 114-118.

[Jaja92] J. Jaja, Introduction to Parallel Al-
gorithms, Addison-Wesley, Reading, 1992.
[Keller01] J. Keller, C. Keßler, and J. Träff,
Practical PRAM Programming, Wiley, New
York, 2001.
[Leppänen11] V. Leppänen, M. Forsell and J-
M. Mäkelä, Thick Control Flows: Introduc-
tion and Prospects, Proc. 2011 Int. Conf. on
Parallel and Distributed Processing Tech-
niques and Applications, July 18-21, 2011,
Las Vegas, USA, 540-546.
[Tomasulo67] R. Tomasulo, An efficient al-
gorithm for exploiting multiple arithmetic
units, IBM Journal of Research and Devel-
opment 11, 1 (1967), 25-33.
[Zhang20] L. Zhang, M. Wahib, H. Zhang
and S. Matsuoka, A Study of Single and
Multi-device Synchronization Methods in
Nvidia GPUs, Proc. IPDPS'20, May 18-22,
2020, New Orleans, Louisiana, USA.

White Paper
Design goals, advantages and benefits of Flow Computing

7

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH FLOW-COMPUTING LTD’S RESEARCH AND DEVELOPMENT RE-
SULTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN FLOW-COMPTING LTD’S TERMS AND CONDITIONS OF SALE/TECHNOLOGY TRANSFER FOR
SUCH RESULTS, FLOW-COMPTING LTD ASSUME NO LIABILITY WHATSOEVER AND FLOW-COMPTING LTD DISCLAIM ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF FLOW-COMPTING LTD’S RESEARCH AND DEVELOPMENT RESULTS INCLUD-
ING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Flow-computing Ltd. may make changes to specifications, architecture, and methodology descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined”. Flow-computing Ltd reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current version of the document and possible characterized errata are available on request.

© Flow-computing Ltd.
May 29, 2024 (version 0.8 2024-5)

Learn More and reach out us:

Home Page: www.flow-computing.com
Email: info@flow-computing.com

