Proceedings · National ## Conference on AIR ## POLLUTION Washington, D.C. November 18-20, 1958 U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service | EXPOSURE TO HIGH CONCENTRATIONS OF AIR POLLUTION Health Effects of Acute Episodes—Dr. William F. Ashe, Professor of Preventive Medicine, Ohio State University College of Medicine, Columbus, Ohio Discussion of Dr. Ashe's Presentation—Dr. Robert A. Kehoe, Kettering Laboratories, University of Cincinnati, Cincinnati, Ohio EXPOSURE TO LOW CONCENTRATIONS OF AIR POLLUTION Health Effects From Repeated Exposure—Dr. Lester Breslow, Chief, Bureau of Chronic Disease, State Department of Public Health, Berkeley, Calif. Discussion of Dr. Breslow's Presentation—Dr. Leonard M. Schuman, Professor of Epidemiology, University of Minnesota School of Public Health, Minneapolis, Minn. Chronic Bronchitis in Relation to Air Pollution in Great Britain—Dr. Geoffrey C. Carey, Department of Preventive Medicine and Industrial Hygiene, University of Cincinnati College of Medicine, Cincinnati, Ohio Discussion of Dr. Carey's Presentation—Dr. James L. Whittenberger, Assistant Dean, Harvard University School of Public Health, Boston, Mass. HOW AIR POLLUTION HAS ITS EFFECTS ON HEALTH The Irritant Action of Air Pollutants—Dr. Norton Nelson, Director, New York University Institute of Industrial Medicine, New York, N.Y. Air Pollution Medical Studies, State Department of Public Health, Berkeley, Calif. Discussion of Dr. Goldsmith's Presentation—Dr. Reginald H. Smart, Clinical Professor of Medicine, University of Southern California School of Medicine; Chairman, Smog Committee, Los Angeles County, Los Angeles, Calif. AIR POLLUTION AND CANCER The Relation of Air Pollution and Cancer—Dr. Thomas F. Mancuso, Chief, | 03 | |---|----------------------------| | EXPOSURE TO HIGH CONCENTRATIONS OF AIR POLLUTION Health Effects of Acute Episodes—Dr. William F. Ashe, Professor of Preventive Medicine, Ohio State University College of Medicine, Columbus, Ohio Discussion of Dr. Ashe's Presentation—Dr. Robert A. Kehoe, Kettering Laboratories, University of Cincinnati, Cincinnati, Ohio EXPOSURE TO LOW CONCENTRATIONS OF AIR POLLUTION Health Effects From Repeated Exposure—Dr. Lester Breslow, Chief, Bureau of Chronic Disease, State Department of Public Health, Berkeley, Calif. Discussion of Dr. Breslow's Presentation—Dr. Leonard M. Schuman, Professor of Epidemiology, University of Minnesota School of Public Health, Minneapolis, Minn. Chronic Bronchitis in Relation to Air Pollution in Great Britain—Dr. Geoffrey C. Carey, Department of Preventive Medicine and Industrial Hygiene, University of Cincinnati College of Medicine, Cincinnati, Ohio Discussion of Dr. Carey's Presentation—Dr. James L. Whittenberger, Assistant Dean, Harvard University School of Public Health, Boston, Mass. HOW AIR POLLUTION HAS ITS EFFECTS ON HEALTH The Irritant Action of Air Pollutants—Dr. Norton Nelson, Director, New York University Institute of Industrial Medicine, New York, N.Y. Air Pollution Medical Studies, State Department of Public Health, Berkeley, Calif. Discussion of Dr. Goldsmith's Presentation—Dr. Reginald H. Smart, Clinical Professor of Medicine, University of Southern California School of Medicine; Chairman, Smog Committee, Los Angeles County, Los Angeles, Calif. AIR POLLUTION AND CANCER The Relation of Air Pollution and Cancer—Dr. Thomas F. Mancuso, Chief, | 88
96
97
02
03 | | Health Effects of Acute Episodes—Dr. William F. Ashe, Professor of Preventive Medicine, Ohio State University College of Medicine, Columbus, Ohio Discussion of Dr. Ashe's Presentation—Dr. Robert A. Kehoe, Kettering Laboratories, University of Cincinnati, Cincinnati, Ohio EXPOSURE TO LOW CONCENTRATIONS OF AIR POLLUTION Health Effects From Repeated Exposure—Dr. Lester Breslow, Chief, Bureau of Chronic Disease, State Department of Public Health, Berkeley, Calif. Discussion of Dr. Breslow's Presentation—Dr. Leonard M. Schuman, Professor of Epidemiology, University of Minnesota School of Public Health, Minneapolis, Minn. Chronic Bronchitis in Relation to Air Pollution in Great Britain—Dr. Geoffrey C. Carey, Department of Preventive Medicine and Industrial Hygiene, University of Cincinnati College of Medicine, Cincinnati, Ohio Discussion of Dr. Carey's Presentation—Dr. James L. Whiltenberger, Assistant Dean, Harvard University School of Public Health, Boston, Mass. HOW AIR POLLUTION HAS ITS EFFECTS ON HEALTH The Irritant Action of Air Pollutants—Dr. Norton Nelson, Director, New York University Institute of Industrial Medicine, New York, N.Y. Air Pollution and Lung Function Changes—Dr. John R. Goldsmith, Head, Air Pollution Medical Studies, State Department of Public Health, Berkeley, Calif. Discussion of Dr. Goldsmith's Presentation—Dr. Reginald H. Smart, Clinical Professor of Medicine, University of Southern California School of Medicine; Chairman, Smog Committee, Los Angeles County, Los Angeles, Calif. AIR POLLUTION AND CANCER The Relation of Air Pollution and Cancer—Dr. Thomas F. Mancuso, Chief. | 96
97
02
03 | | Preventive Medicine, Ohio State University College of Medicine, Columbus, Ohio Ohio Ohio State University College of Medicine, Columbus, Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio | 96
97
02
03 | | Health Effects From Repeated Exposure—Dr. Lester Breslow, Chief, Bureau of Chronic Disease, State Department of Public Health, Berkeley, Calif. Discussion of Dr. Breslow's Presentation—Dr. Leonard M. Schuman, Professor of Epidemiology, University of Minnesota School of Public Health, Minneapolis, Minn. Chronic Bronchitis in Relation to Air Pollution in Great Britain—Dr. Geoffrey C. Carey, Department of Preventive Medicine and Industrial Hygiene, University of Cincinnati College of Medicine, Cincinnati, Ohio. Discussion of Dr. Carey's Presentation—Dr. James L. Whittenberger, Assistant Dean, Harvard University School of Public Health, Boston, Mass. HOW AIR POLLUTION HAS ITS EFFECTS ON HEALTH The Irritant Action of Air Pollutants—Dr. Norton Nelson, Director, New York University Institute of Industrial Medicine, New York, N.Y. Air Pollution and Lung Function Changes—Dr. John R. Goldsmith, Head, Air Pollution Medical Studies, State Department of Public Health, Berkeley, Calif. Discussion of Dr. Goldsmith's Presentation—Dr. Reginald H. Smart, Clinical Professor of Medicine, University of Southern California School of Medicine; Chairman, Smog Committee, Los Angeles County, Los Angeles, Calif. AIR POLLUTION AND CANCER The Relation of Air Pollution and Cancer—Dr. Thomas F. Mancuso, Chief. | 02
03
08 | | Bureau of Chronic Disease, State Department of Public Health, Berkeley, Calif | 02
03
08 | | Health, Minneapolis, Minn. Chronic Bronchitis in Relation to Air Pollution in Great Britain—Dr. Geoffrey C. Carey, Department of Preventive Medicine and Industrial Hygiene, University of Cincinnati College of Medicine, Cincinnati, Ohio. Discussion of Dr. Carey's Presentation—Dr. James L. Whittenberger, Assistant Dean, Harvard University School of Public Health, Boston, Mass | 03 | | Discussion of Dr. Carey's Presentation—Dr. James L. Whittenberger, Assistant Dean, Harvard University School of Public Health, Boston, Mass | 08 | | The Irritant Action of Air Pollutants—Dr. Norton Nelson, Director, New York University Institute of Industrial Medicine, New York, N.Y | 10 | | York University Institute of Industrial Medicine, New York, N.Y. Air Pollution and Lung Function Changes—Dr. John R. Goldsmith, Head, Air Pollution Medical Studies, State Department of Public Health, Berkeley, Calif. Discussion of Dr. Goldsmith's Presentation—Dr. Reginald H. Smart, Clinical Professor of Medicine, University of Southern California School of Medicine; Chairman, Smog Committee, Los Angeles County, Los Angeles, Calif. AIR POLLUTION AND CANCER The Relation of Air Pollution and Cancer—Dr. Thomas F. Mancuso, Chief. | 10 | | Clinical Professor of Medicine, University of Southern California School of Medicine; Chairman, Smog Committee, Los Angeles County, Los Angeles, Calif | | | The Relation of Air Pollution and Cancer—Dr. Thomas F. Mancuso, Chief. | | | The Relation of Air Pollution and Cancer—Dr. Thomas F. Mancuso, Chief, | | | Division of Industrial Hygiene, State Department of Health, Columbus, Ohio | 21 | | Associate Professor of Pathology, University of Southern California School | | | of Medicine, Los Angeles, Calif | | | R. Heller, Director, National Cancer Institute, Public Health Service Second Discussion of Dr. Mancuso's and Dr. Kotin's Presentations—Dr. | | | Dean F. Davies, American Cancer Society, New York, N.Y | 53 | | Group D—Economic and Social Effects of Air Pollution | | | Group Personnel, Theme, Questions for Discussion | 1 | | IMPACT OF AIR POLLUTION ON OUR ECONOMICS | | | Industrial and Community Development and Property Values—Dennis O'Harrow, Executive Director, American Society of Planning Officials, Chicago, Ill | 12 | | The Homemaker's Viewpoint—Miss Chloe Gifford, President, General Federation of Women's Clubs, Washington, D.C. (Read by Miss Sally | | | Butler) | 18 | The 6th and last question, "How is improved knowledge in this field to be obtained?" By whom? How soon?", leaves me in the field of speculation. Many of you already know of the very substantial program being conducted by the automobile industry to improve knowledge in the areas outlined in the questions above. There are many other facilities at work, including the U.S. Public Health Service; the Los Angelea Air Pollution Control District; the Coordinating Research Council, American Petroleum Institute; the Air Pollution Foundation; the Bureau of Mines; and the Air Pollution Control Association; just to mention a few. These and many other agencies will develop information in these fields be available? I don't know. The field is one where original research and invention are still playing a prominent part. Neither of these two can be programmed. The work is proceeding energetically, and new knowledge is constantly being obtained. With continued hard work and perhaps a little good luck, some answers should begin to appear soon. ### Transportation Sources of Air Pollution (3)—Petroleum Charles A. Jones Wilmington, Calif. Executive Secretary, Smoke and Fumes Committee American Petroleum Institute American Petroleum Institute Transportation sources of air pollution include aircraft, boats and ships, trains, trucks, and buses, as well as automobiles. Aircraft and ships operate primarily in unpopulated areas, and their contribution to urban air pollution is relatively insignificant. Trains, trucks, and buses are, in a great many instances, diesel propelled, and the average citizen is, from time to time, aware of pollution in the form of odors and smoke. However, diesel exhaust is only a very small fraction of the total air pollution from transportation, and because it is a relatively minor source, little work has been done to control it. Diesel engines properly operated and properly maintained produce a minimum of smoke and odors. Research organizations and individuals studying air-pollution problems are aware of the contribution to air pollution from diesel exhaust, and research in this field is contemplated or is under way in several instances. Since the major source of pollution from transportation is the exhaust from the gasoline-powered automobile, my remarks will be confined to a study of this problem. If a gasoline engine could be operated to produce complete combustion, the exhaust products would be carbon dioxide, water, and oxides of nitrogen. Unfortunately the combustion process is not complete in any practical engine, and the resulting exhaust contains hydrocarbons, oxygenated products, carbon monoxide, soot, and smoke, as well as carbon dioxide, water, and oxides of nitrogen. Carbon monoxide is a toxic constituent of exhaust and as such may in certain instances be a health hazard. Oxygenated products produce annoying odors, and smoke from exhausts contributes to visibility reduction and general soiling of the surroundings. The hydrocarbons and the oxides of nitrogen react in the presence of air and sunlight to produce the manifestations known in Los Angeles as "smog," characterized by eye irritation, the formation of areosols, damage to vegetation, and increased concentration of oxidant, principally ozone, in the atmosphere. Automobile exhaust contains something of the order of 300 to 5,000 parts per million hydrocarbons, depending upon the driving cycle. In Los Angeles County, about 2% million cars consume an estimated 6 million gallons of gasoline chaust is a primary source of air pollution. It is estimated that hydrocarbon emissions from automobiles in Los Angeles County amount to about 1,000 tons per day. This is ten times the hydrocarbon emission from alt the refineries operating in the area. The petroleum industry supplies the fuel used by the automobile, and thus has a sincere interest in the solution to the problem of pollution from automobile exhaust. The stated objective of the Smoke and Fumes Committee of the American Petroleum Institute is "to determine the causes and methods of control of objectionable atmospheric pollution resulting from the production, manufacture, transportation, sale and use of petroleum and its products." Several laboratories have repeatedly demonstrated that ozone, eyeirritating materials, and aerosols are formed when hydrocarbons and oxides of nitrogen in concentrations in the parts-per-million range are mixed with air and irradiated with artificial sunlight. The ability to produce and control this reaction in the laboratory has made possible a study of many of the variables suspected to influence "smog" formation. Motor gasoline is a complex mixture of hydrocarbons with a wide range of chemical and physical properties. To insure that automobi Research Institute for the irradiation and study of diluted auto exhaust were provided under APF sponsorship. The Franklin Institute Mobile Air Pollution Laboratory, housing long-path infrared equipment, and the facilities of the University of California at Riverside Air Pollution Research Group were brought into the problem under the sponsorship of the API. The study was designed primarily to study the manifestations of air pollution such as eye irritation, aerosol formation, ozone formation, plant damage, and various chemical factors from the exhausts from test fuels. It was not the purpose of this project to establish the chemical nature or the manner of formation of the products product of the products of the product tion, plant damage, and various chemical factors from the exhausts from test fuels. It was not the purpose of this project to establish the chemical nature or the manner of formation of the products of the photochemical reactions. The equipment used included a test automobile mounted on a chassis dynamometer and equipped with suitable automatic controls to produce the various phases of automobile operation. The exhaust produced was collected, diluted with purified air, and pumped into a 520-cubic foot chamber where artificial light sources were used to simulate sunlight irradiation. Chemical sampling devices and test instruments were provided to monitor the exhaust mixture, and a panel of male college students was used to measure eye irritation. Four test fuels were used in this study. Three fuels representing extremes in hydrocarbon composition were compared with a blend of commercial gasolines sold in Los Angeles. Four automobiles were selected, representing typical cars found on the road today. The cars were not new, but had indicated mileages from 22,000 to 60,000 miles. These cars were tuned and equipped with new points and plugs before the tests were carried out, but were not otherwise serviced. In studying automobile exhaust, the operating cycle chosen is an important variable. Under idling and decelerating conditions, hydrocarbon emission is less and oxides of nitrogen emission increases. Earlier work by the Air Pollution Foundation has shown that eye irritation depends to a large extent upon the concentration of hydrocarbons and the ratio of hydrocarbons to oxides of nitrogen in the exhaust mixture. Thus, it is apparent that a choice of operating cycles is important in a study of this kind. To match the actual situation as closely as possible, the driving cycle used followed a traffic pattern survey conducted by the Automobile Manufacturers Association in Los Angeles. The results of these experiments have shown that substantial eye irritation was developed from the irradiated exhaust from teo the rea of Mines Petroleum Experiment Station in Bartlesville, Okla. Here the primary emphasis has been on the analysis of exhaust gases to determine the hydrocarbon composition. As a part of this study, many different fuel types have been used in a test engine and the exhaust products analyzed. Results from this study have shown that olefin contents of exhaust hydrocarbons tend to increase with increase in engine severity, regardless of the fuel used. In terms of fuel composition, aromatic compounds in a fuel are heavily reflected in the exhaust products, while olefins in fuel are reflected to a lesser degree in exhaust, but are heavily influenced by the driving cycle. cycle. Thus, it is apparent that while changes in fuel composition do have some effect on the hydrocarbon composition of the exhaust, no appreciable effect on air pollution manifestations can be accomplished by changing fuel composition. As long as there are hydrocarbons and oxides of nitrogen emitted from the tailpipes of automobiles, we can expect to have eye-smarting, visibility-reducing "smog" in areas like Los Angeles where traffic density is high and natural ventilation is poor. The only sound approach to the problem seems to be to add to our automobiles a device to convert the exhaust to that ideal condition mentioned earlier where the products of combustion are harmless carbon dioxide and water. #### DISCUSSION DISCUSSION Dr. CHAMBERS. It is evident from the material that has been presented in all three papers pertinent to the subject on hand, namely the automobile as a source of pollution, that there has been no collusion among the three authors covering essentially the same ground. We have come up with about the same determination as far as the pollutants contributed by automobiles are concerned. While this is not strictly related to the automobile as a source of pollution, many of us would have to take the position that the conclusion stated at the end of Mr. Jones' paper, namely that no practical effect can be realized by any change in fuel composition, is not yet proved. We can say this with a reasonable degree of definiteness in riew of the fact that the data produced by the foundation referred to y Mr. Jones are now in the form of a report, and I call your attention to the inconsistencies in the various conclusions drawn by the authors of that report. by Mr. Jones are now in the form of a report, and I can your attention of the inconsistencies in the various conclusions drawn by the authors of that report. The problem is not settled. I am not contending that it will be attled favorably. I don't know. But I don't believe that on the asis of present evidence we can conclude any more than that the nbject is one which should be studied, although not with the expectation that full composition control can ever effect a complete solution of the hydrocarbon problems. That, I agree, will only come about that the development of some tailpipe device which will essentially surn up the hydrocarbon. On the other hand, practically, we have to recognize that any such levice that is now in sight is potentially so costly that to apply it in community like Los Angeles, for example, is going to mean an expenditure of a half billion to a billion dollars. In my opinion the ablic in any locality is going to be much more susceptible to a partial plution if it can be accomplished on a more economical basis.