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a b s t r a c t

The idea that the increased ubiquity of digital devices negatively impacts neuro-

development is as compelling as it is disturbing. This study investigated this concern by

systematically evaluating how different profiles of screen-based engagement related to

functional brain organization in late childhood. We studied participants from a large and

representative sample of young people participating in the first two years of the ABCD

study (ages 9e12 years) to investigate the relations between self-reported use of various

digital screen media activity (SMA) and functional brain organization. A series of gener-

alized additive mixed models evaluated how these relationships related to functional

outcomes associated with health and cognition. Of principal interest were two hypotheses:

First, that functional brain organization (assessed through resting state functional con-

nectivity MRI; rs-fcMRI) is related to digital screen engagement; and second, that children

with higher rates of engagement will have functional brain organization profiles related to

maladaptive functioning. Results did not support either of these predictions for SMA.

Further, exploratory analyses predicting how screen media activity impacted neural tra-

jectories showed no significant impact of SMA on neural maturation over a two-year

period.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction
Digital screens are now a staple of childhood and adolescence

(Common Sense Media, 2017; Ofcom, 2017). Driven by con-

cerns voiced about the potential impact of screens on young

people, a growing literature of screen media impact studies

have failed to reach a consensus surrounding the links be-

tween digital technology use and adolescent well-being and

development (Beyens, Valkenburg, & Piotrowski, 2018;

LeBourgeois et al., 2017; Orben& Przybylski, 2019; Paulus et al.,

2019; Robinson et al., 2017). Given the lack of conclusive evi-

dence, pediatricians, policymakers, and other interested

parties have resorted to backing the precautionary principle,

that is, “when human activities may lead to morally unac-

ceptable harm that is scientifically plausible but uncertain,

actions shall be taken to avoid or diminish that harm”

(UNESCO COMEST, 2005). The specific advice given to parents

has varied over time: early advice included the 2x2 rule, that

children under two years of age should not be exposed to

digital screenmedia and those over two should only use 2 h of

digital screenmedia a day (AAP, 2010), which was unworkable

on practical grounds (Houghton et al., 2015). Later guidance

insisted on parents tracking and improving the quality of

screenmedia their children engage with (AAP, 2016). Based on

only the contentious, lacking, or inconclusive evidence avail-

able, many policies have gotten well ahead of the available

scientific consensus. Responsible professional organizations

now highlight this scientific uncertainty present in the liter-

ature, and resort to recommending that rules and limits

should be set on a child-by-child basis (RCPCH, 2019).

This uncertainty is keenly felt in the area of developmental

cognitive neuroscience as the central topic of study, the ways

by which the minds of young people pass safely from child-

hood to adulthood is something parents and policymakers

want to protect at all costs. The changing nature of the brain

during the first two decades of life suggests that environ-

mental inputs could impact brain development (Blakemore &

Mills, 2014). Despite the lack of research investigating how

digital screen engagement is related to measures of brain

development during childhood and adolescence (Mills, 2014),

there are, nevertheless, concerns that digital screens might

harm the developing brain. The most recent concerns

involving digital screen technologies revolve around internet

use and online behaviors, although only a few studies have

measured the relationship between digital screen technolo-

gies and brain functionality in representative samples of the

developing population.

The majority of scientific work that has related brain

measures to internet use has focused on unrepresentative

samples of the developing populationdnamely, individuals

who have been identified as dysregulated internet users (Park,

Han, & Roh, 2016). A widely held misconception is that the

results gathered from these studies are applicable to most

children or adolescents, which likely stems from a miscon-

ception that most children or adolescents are excessive

internet users. However, the majority of children and ado-

lescents are not excessive users of the internet (Blinka et al.,

2015), and do not experience the problems associated with

dysregulated internet use (Durkee et al., 2012; Strittmatter
et al., 2015). The results of studies on children and adoles-

cents with dysregulated internet use, as well as the corre-

spondingwarnings andmedia headlines, should therefore not

be generalized to the majority of the population.

Another common concern is that digital screens “rewire”

the developing brain. However, no studies to date can tell us if,

or how, screen engagement is altering brain connections.

Probable causes of this concern are misunderstandings

regarding brain plasticity and sensitive periods of brain

development. While the brain is plastic throughout life-

dmeaning it can change in response to experiencedit is even

more amenable to change during the period when brain

connections are being pruned away to adult levels. The timing

of this period of heightened sensitivity differs across the

brain, with some regions possessing relatively short windows

of sensitivity (e.g. visual processing areas) and some regions

experiencing longer windows of sensitivity (e.g. the prefrontal

cortex) (Huttenlocher& Dabholkar, 1997; Petanjek et al., 2011).

Few studies have demonstrated definitive evidence of cellular

changes in the developing human brain in response to envi-

ronmental influences, and these are often limited to percep-

tual circuits like those implicated in vision (Huttenlocher, de

Courten, Garey, & Van der Loos, 1982). Most studies investi-

gating how environmental influences impact the developing

human brain have inferred cellular changes from macro-

scopic changes observed through MRI. These studies investi-

gated the effect of environmental influences such as

socioeconomic status (Hackman& Farah, 2009), chronic stress

(Lupien, McEwen, Gunnar, & Heim, 2009), and early life

deprivation (Fox, Levitt, & Nelson III, 2010)dfactors that

already possess strong empirical support for affecting cogni-

tive development and well-being. Unlike these severe envi-

ronmental influences, there is still little evidence that screens

impact cognitive development (Mills, 2016) or mental well-

being (Przybylski & Weinstein, 2017) in childhood and

adolescence.

If we want to know how digital screen engagement sys-

tematically impacts the developing mind, we need to relate

relevant brain measures to behavior, cognition, and well-

being. Studies that include measures of how screen engage-

ment relates to brainmeasures aswell as functional outcomes

should be given greater consideration than studies that just

correlate levels of screen use with a given brain measure

alone. This is because there is substantial individual vari-

ability in brain structure and function, as well as in how an

individual's brain structure and function relates to that in-

dividual's cognition, behavior, and well-being (Anandakumar

et al., 2018; Mills et al., 2012; Mills & Tamnes, 2014). While it

is one thing to know whether a certain brain measure corre-

lates with screen use, it is another to know if that means the

brain region is impaired or functioning at a suboptimal level.

1.1. Policy and evidence

With many policy and industry initiatives currently being

implemented to negate the potential negative effect of digital

screen engagement on our youngest generations, transparent

scientific investigation becomes paramount. The wide variety

of campaigns to improve adolescent outcomes are all united

by their lack of underlying evidence (e.g. Scroll Free

https://doi.org/10.1016/j.cortex.2023.09.009
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September, https://www.waituntil8th.org, https://www.papa

yaparents.com/the-problem/). The American Academy of Pe-

diatrics recommends limiting daily screen media usage to 1 h

of high-quality engagement for preschool children between

ages 2e5 years (AAP, 2011). Technological interventions like

those from Apple (e.g., “iOS 12 introduces new features to

reduce interruptions and manage Screen Time,” 2018), Google

(e.g., https://wellbeing.google), and Facebook (https://www.

facebook.com/safety/wellbeing) have been introduced

without evidence that these tools which limit screen media

use, provide feedback on use, or batch notifications have any

substantial positive health effects. In the United Kingdom, a

Ministry of Health initiative is trying to specify new screen

engagement guidelines (Kidron & Rudkin, 2017); this is

proving a difficult task because the existing literature does not

provide the actionable evidence necessary to support

evidence-based policy.

There is a current lack of evidence because no study has

fully examined how screen engagement impacts brain

development using longitudinal sampling, which is necessary

to accurately characterize brain development (Mills &

Tamnes, 2014). To date, studies have only employed cross-

sectional (one measure per participant) sampling methods.

This kind of evidence provides information about how dif-

ferences between young people might be explained by

different patterns of digital screen engagement but does not

help us understand how within-person variation in cognitive

development might be explained by how young people use

technology. Further, as stated above, most studies that have

examined pediatric populations, focusing on differences be-

tween individuals with and without some form of dysregu-

lated internet use. For example, studies have compared the

brains of individuals who have been categorized as showing

dysregulated internet use with those individuals whose use

does not meet the criteria for dysregulated internet use (Park

et al., 2016). By design, these comparison studies are only

able to describe group-average differences, and thus absorb

any heterogeneity across individuals within a group.

One review found that areas of the brain involved in

reward processing, cognitive control, and memory appear to

show differences between groups of individuals with dysre-

gulated internet use and groups who use the internet at

typical levels (Park et al., 2016). For example, one study found

decreased baseline functional brain connectivity between

brain regions involved in reward processing in individuals

with dysregulated internet gaming behavior compared to

healthy controls (Zhang et al., 2015). However, these observed

brain differences do not necessarily reflect dysfunction or

abnormalities, they could be: 1) a compensatory mechanism

in the dysregulated group, 2) an impairment in brain func-

tioning, or 3) a process related to an unmeasured variable. In

the above study, for example, one way to understand the

functional meaning of the observed differences in brain con-

nectivity in the dysregulated group would be to correlate how

brain connectivity relates to cognitive functioning or well-

being. If such an analysis finds the same direction of effect,

that would give further clarity that the actual difference in

brain connectivity between groups was a sign of dysfunction.

Studies that relate digital screen engagement with both

brain measures and assessments of daily functioning bring us
one step closer to understanding how screen use affects the

brain. One recent example of this kind of study focused on the

relation between self-reported daily gaming behavior to

cognitive abilities and brain function in adolescents and

young adults aged 13e24 years (Moisala et al., 2017). Unlike

previous studies of individuals with dysregulated gaming, the

participants in this study were representative of the popula-

tion in terms of how much gaming they engaged in, ranging

from very little to moderate amounts. Behaviorally, the par-

ticipants who reported more daily gaming were better at

keeping track of many items in their mind, and were faster at

switching their attention, than participants who reported less

daily gaming.While participantswho reported higher levels of

daily gaming displayed less activity in a network of brain re-

gions involved in cognitive control when trying to keep track

of just a few items, these participants also showedmuchmore

activity in the same areas of the brain when they had to keep

track of many items. The authors suggest that this pattern of

brain activity could reflect an alternative cognitive strategy for

participants who are more frequent gamers than individuals

who game less (Moisala et al., 2017). However, given that this

study is cross-sectional, it cannot tell us if daily gaming causes

the differences in brain measures and functionality.

1.2. Using the ABCD dataset to examine digital screen
engagement and brain development

The Adolescent Brain Cognitive Development (ABCD) study

presents an unprecedented opportunity for developmental

scientists to investigate how changes in the brain across the

second decade of life relate to the emergence ofmental health

disorders in adolescence. Several aspects of the ABCD study

distinguish it from previous investigations of brain develop-

ment, including its large, nationally representative sample

(~11,500 children), longitudinal single cohort design, and data

collection spanning measures from biological assessments to

culture and environment.

While making data accessible presents a major step for-

ward, it also opens up the possibility for counterproductive

data mining and broad dissemination of false positive results.

On a large dataset, traditional statistical approaches empha-

sizing null-hypothesis testing may yield findings that are

statistically significant but lack practical significance (Orben&

Przybylski, 2019). Questionable research practices, such as

conducting many tests but only reporting the ones that reach

a predefined level of statistical significance (i.e. selective

reporting) and hypothesizing after the results are known,

exacerbate these problems (Munaf�o et al., 2017), blocking

progress toward obtaining meaningful insights into mental

health. Functional MRI research has proven susceptible to

non-replicable findings due to analytic and statistical errors

(Bennett, Wolford, & Miller, 2009; Vul, Harris, Winkielman, &

Pashler, 2009), but also because the analysis of fMRI includes

several points of flexibility, which could elevate the number of

false positives reported in the literature (Carp, 2012). These

issues can be addressed by emphasizing transparency and

reproducibility, including preregistration or registered reports

of analyses conducted on pre-existing datasets, developing

and sharing reproducible code, and using holdout samples to

validate model generalizability. The piecemeal release on the
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ABCD dataset provides a unique opportunity for researchers

to engage in such important robust practices.

1.3. Registered study

While digital screens are regularly used by children of all ages,

it is unclear how engaging with digital screens is related to

neurodevelopment. The goal of the present study was to

investigate how different profiles of digital screen engage-

ment relate to functional brain organization in late childhood.

We tested if functional brain organization is related to digital

screen engagement and whether children with higher levels

of screen engagement have functional brain organization

profiles related to maladaptive functioning. In addition, we

explored first steps in modelling causal effects over time. We

discuss how the results of this investigation can inform

ongoing scientific, policy, and public discussions concerning

digital screens and children's brain development. Conducting

this study as a registered report (https://osf.io/z4eyv) with

shared analytic code applied to an openly accessible dataset

further increases the replicability and reproducibility of this

work.

1.4. Deviations from stage I

In the accepted Stage I Registered Report, we stated that we

planned to use ABCD data release 1.1 and the subsequent

baseline data. We planned an approach of relating digital

screen engagement with brain network correlations and

subsequently using these profiles to predict maladaptive

functioning. These two steps were meant to be conducted on

the first split of the first wave of data (Release 1.1); then, we

had planned to replicate ourmodelswith the second split data

(Release 2.0).

We followed the original analysis plan, but made use of the

full data available to use at the time of analysis with one

exception. Rather than running our models on the first half of

the baseline sample and testing whether the models replicate

on the second half of the baseline sample, we ran our models

on the full first wave (baseline), and attempted to replicate on

the full release of the second wave (two year follow-up).

Separately, we also made use of the longitudinal aspect of

the new release and we report new exploratory analyses

which examine trends over time. This arm of the study uses

graph theory to assess the impact of screen time on the

network structure of functional brain organization over time.

The analysis section and the analysis code present the full

details of our approach.
2. Materials and method

We report how we determined our sample size, all data ex-

clusions, all inclusion/exclusion criteria, whether inclusion/

exclusion criteria were established prior to data analysis, all

manipulations, and all measures in the study. The data under

analysis for this study were drawn from the ABCD Study Data

Release 4.0. The recruitment strategy for the ABCD study has

been designed so that demographic characteristics of the

sample is representative of the broader United States
population of 9-11 year old children (Garavan et al., 2018). The

ABCD Study Data Release 4.0 includes baseline data from

11,878 research participants, including minimally processed

brain image volumes and tabulated structural MRI, diffusion

MRI, resting-state fMRI and task fMRI results, as well as all

non-imaging assessment data from the genetics, physical and

mental health, neurocognition, substance use, biospecimens

and culture and environment domains.

Data were collected across 21 sites in the United States,

and the image acquisition protocols as well as the pre-

processing are detailed extensively in Casey et al., 2018;

Hagler et al., 2018. Imaging parameters were made as similar

as possible across scanner manufacturers, outlined in:

https://abcdstudy.org/images/Protocol_Imaging_Sequences.

pdf. Participants completed a 2-h scanning session that

included two structural (anatomical) MRI scans, one diffu-

sion MRI scan, four resting state fMRI scans, and three sets of

two task-fMRI scans. Relevant to the present analysis are the

structural MRI and the resting state fMRI scans. The T1-

weighted structural MRI scan was a 1 mm isotropic 3D T1w

inversion prepared RF-spoiled gradient echo scan, and the

resting state fMRI scan was a 2.4 mm isotropic, TR ¼ 800 ms,

multiband EPI with slice acceleration factor 6 (Hagler et al.,

2018). All fMRI images were corrected for head motion

using AFNI's 3dvolreg (Cox, 1996), corrected for distortions

due to gradient nonlinearities, and remain in “native-space”

with 2.4 mm isotropic resolution (Hagler et al., 2018). Resting

state fMRI data then underwent additional processing steps

including the removal of initial volumes, normalization,

regression, temporal filtering, and calculation of ROI-average

time courses (Hagler et al., 2018).

In accordance with our preregistration, to be included in

the confirmatory, model-building part of this research, par-

ticipants had to have at least 10 min of high quality resting-

state functional connectivity data, which are necessary to

obtain a stable measure of functional brain connectivity (Birn

et al., 2013; Laumann et al., 2015). Specifically, participants

had to have more than 10 min of data with a framewise

displacement (FD) below 0.2 mm using the filtering technique

employed by ABCD's Data Analysis and Informatics Center

(DAIC), and without y-displacement (Fair et al., 2018), for all

scans deemed as “OK” by the DAIC. Framewise displacement

is calculated by summing the absolute values of the de-

rivatives of translational and rotational motion estimates at

each timepoint in the 4D functional image (Power, Barnes,

Snyder, Schlaggar, & Petersen, 2012). Further, participants

also had to have an anatomical brain scan that passed the

DAIC quality control inspection (Hagler et al., 2018). We

applied these data inclusion criteria to ensure that only high

quality data are analyzed, and to minimize the possible

impact of participant motion on our measures of interest

(Power et al., 2012). Of the 11,878 participants, 86 did not have

MRI scans, and 3,983 failed at least one benchmark, leaving a

total of 7,809 participants for our confirmatory analyses.

The exploratory longitudinal network analysis required

two separate timepoints of structural and functional MRI

scans. 7,375 children had two scans of MRI data and were

included. The inclusion criteria for longitudinal analyses were

the same as the above, but participants had to pass the in-

clusion criteria at both timepoints. This left 4,042 participants

https://osf.io/z4eyv
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eligible for longitudinal network analysis. A full description of

the inclusion pipeline is detailed in Fig. 1.

2.1. Explanatory variables

2.1.1. Digital Screen Engagement
Self-report estimates provided by participants were our pre-

dictor variables. Participants used a 7-point scale to estimate

the amount of time they spent on each of a series of six digital

activities on both “typical” weekday and weekend days; this

ranged from “None” coded 0, “< 30 min” coded .25, “30 min”

coded .5, “1 h” coded 1, “2 h” coded 2, “3 h” coded 3, and “4þ
hours” coded 4. While this recoding introduces additional

error, it was necessary to allow the question to be used as a

continuous measure in the analyses. These six activities

included ‘traditional’ screen pursuits such as watching “TV

shows or movies” and using digital platforms to “Watch videos

(such as YouTube)?“, as well as interactive pursuits like

whether the adolescents “Play video games on a computer, con-

sole, phone or other device (Xbox, Play Station, iPad)?“. In addition

to these activities, participants were asked about their use of

specific technologies: how much they “Text on a cell phone,

tablet, or computer (GChat, Whatsapp, etc.)?” and howmuch they

connect with others using apps such as “Video chat (Skype,

Facetime, etc.)?” and social media platforms (“Visit social

networking sites like Facebook, Twitter, Instagram, etc.?“).

2.1.2. Average functional brain connectivity between and
within networks
Brain network connectivity constituted data for our analytical

pathway examining which functional brain organization

profiles were related to digital screen engagement, to ulti-

mately examine whether these profiles were maladaptive.
Fig. 1 e Schematic illustrating the reasons for exclusion for GFA

Analysis; GAMM: Generalized Additive Mixture Model.

Fig. 2 e Distinct segments of the cortex as defined in the Gordo

communities e.g., Visual (dark blue), Dorsal somatomotor (light b

Default (red), Fronto-parietal (yellow), Dorsal attention (green), C

Salience (black). Figure from Gordon et al., 2016.
Brain network connectivity was therefore not the outcome of

the study, but part of a predictive measure of maladaptive

functioning.

The curated data release of the ABCD data provided the

average correlation within and between regions of distinct

functional brain networks as defined by the Gordon parcella-

tion (Gordon et al., 2016). This parcellation divides the brain

into functionally homogenous regions, with each region

assigned to a distinct functional brain network (Fig. 2). As

detailed by the ABCD DAIC in Hagler et al., 2018, the average

correlation within a functional brain network is calculated as

the average of the Fisher-transformed correlations for each

unique, pairwise combination of regions belonging to a given

network, and the average correlation between networks is

calculated by averaging the correlations for each unique, pair-

wise combination of regions in the two networks of interest.

Across development, regions within the same functional

network become more strongly connected, whereas regions

between functional brain networks become less strongly

connectedda process known asmodular segregation (Bassett,

Xia, & Satterthwaite, 2018). Measures of connectivity between

functional brain networks can inform us about human

cognition, development, as well as psychopathology. For

example, decreased segregation between the default mode

network and the fronto-parietal and salience networks is

related to the presence of psychopathology in youth (Xia et al.,

2018). Increased connectivity between valuation and cognitive

control networks is related to temporal discounting prefer-

ence in the transition to adolescence (Anandakumar et al.,

2018). In the current study we specifically examined the

average connectivity within and between the cingulo-

opercular, default mode, dorsal attention, fronto-parietal,

salience, ventral attention, auditory, visual, cingulo-parietal,
þ GAMM and network analyses. GFA: Group Factor

n parcellation. Colors represent functional network

lue), Ventral somatomotor (orange), Auditory (light purple),

ingulo-opercular (purple), Ventral attention (teal), and

https://doi.org/10.1016/j.cortex.2023.09.009
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retrosplenial temporal, sensorimotor hand, and sensorimotor

mouth networks as they relate to digital screen engagement.

Profiles of the relationships between these networks and

digital screen engagement were examined through Group

Factor Analysis, as detailed below. The outcomes of this

analysis were then related to adaptive/maladaptive func-

tioning in a later processing step. We included the sensori-

motor mouth network in the present analysis as a control

network, and we did not expect the within network correla-

tion nor any of the between network correlations with the

sensorimotor mouth network to relate to digital screen

engagement.

2.2. Criterion variables

2.2.1. Mental health
Caregivers of ABCD participants complete the Child Behavior

Checklist (CBCL) to assess child mental health (Achenbach,

2009). We examined the CBCL t-scores of externalizing, and

internalizing syndromes scales. The internalizing scale of the

CBCL includes the anxious/depressed, withdrawn-depressed,

and somatic complaints syndrome subscales, and the exter-

nalizing scale includes the rule-breaking and aggressive

behavior syndrome subscales.

2.2.2. Cognition
The ABCD study includes measures of several cognitive pro-

cesses, including episodic memory, executive function,

attention, working memory, processing speed, language abil-

ities and fluid reasoning (Luciana et al., 2018). We assessed the

relationship between digital screen engagement, rs-fcMRI

network correlations, and eight distinct cognitive processes

assessed through tests administered to participants (detailed

in Table 1).

2.3. Control variables

Research examining how children and adolescents use digital

devices indicates a number of background factors shape how

they approach a wide range of screen-based technologies

(Parkes, Sweeting, Wight, & Henderson, 2013). Measuring

variabilities in these constructs is key to disentangling their

influence on key developmental and psychological outcomes

as well as identifying the unique effects we might ascribe to

technology engagement proper. Therefore, when modeling

the relationships between digital screen engagement e rs-

fcMRI network correlation factors and functional outcomes,

the following will be included as predictors in the first step of
Table 1 e Selected outcomes from the neurocognitive battery. A

Test name

Dimensional Change Card Sort Test (Ages 8e11 v2.0)

Flanker Test (Ages 8e11 v2.0)

Picture Sequence Memory Test (Age 8þ, Form A, v2.0)

Pattern Comparison (Age 7þ, v2.0)

List Sort Test (Age 7þ, v2.0)

Oral Reading Recognition Test (Age 3þ v2.0)

Picture Vocabulary Test (Age 3þ, v2.0)

WISC-V Matrix Reasoning Total Scaled Score
our regression models (detailed in the analytic plan below):

sex assigned at birth, ethnicity, age of child and caregiver

education. Caregiver education allows us to control for char-

acteristics that have previously been found to influence child

outcomes (Desai, Chase-Lansdale, & Michael, 1989).

2.4. Consideration of outcome neutral conditions

We expected the self-reported weekday and weekend screen

time activities to be intercorrelated. In other words, we ex-

pected that: a) screen time measures in general will positively

correlate with one another and b) that the items related to

social communication (texting, video chat, and social network

site usage) will show strong correlations among themselves

compared to items related to passive viewing (watching tele-

vision or movies and watching online videos). In turn we ex-

pected the items related to passive viewing to be strongly

correlated among themselves as well. Effect sizes were the

primary measure of interest in the current study. Although

fMRI analysis techniques can inflate effect sizes, especially in

small samples (Geuter, Qi, Welsh, Wager, & Lindquist, 2018, p.

295048; Vul et al., 2009), the ABCD dataset is large enough to

minimize this inflation and detect brain-wide associations

(Marek et al., 2022). However, there is a lack of literature de-

tailing a minimum effect size of interest when relating func-

tional brain network connectivity to screen engagement.

Consequently, correlations less than .20 were operationalized

as background noise (vs. signal) (Ferguson, 2009). This means

that digital screen engagement associations that explain less

than 4 % (i.e. r2 < .04) of functional brain network connectivity

were judged as being too modest in practical terms to be

worthy of extended scientific discussion. By anchoring our

smallest effect size to screen engagement effects in self-report

literature (which are in the realm of r ¼ .20), our hypothesis

tests allowed us to examine whether the effect we observed

on brain-related outcomes was larger or smaller than self-

report outcomes. 95 % confidence intervals that are inferior

to this standard were identified as a null result that dis-

confirmed the hypothesis, whereas 95 % confidence intervals

that are superior to this standard would demonstrate strong

support for the hypothesis and any 95 % confidence intervals

overlapping with this standard would demonstrate weak

support for the hypothesis.

2.5. Analytic approach

Our primary analytic approach for our confirmatory analyses

was split into two parts: 1) relating digital screen engagement
ll tests are part of the NIH Toolbox.

Underlying construct

Executive Functioning (Zelazo, 2006)

Inhibitory Control and Selective Attention (Zelazo et al., 2014)

Episodic Memory (Dikmen et al., 2014)

Processing Speed (Carlozzi et al., 2015)

Working Memory (Tulsky et al., 2014)

Reading Decoding (Gershon et al., 2014)

Vocabulary Comprehension (Gershon et al., 2014)

Fluid Intelligence (Sudarshan et al., 2016)
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with brain network correlations and 2) relating these profiles

with maladaptive functioning. A third, exploratory step

examined the impact of screen engagement on changes in the

network structure of the brain over time. For the first step, we

applied a group factor analysis (GFA) with self-report digital

screen engagement and resting-state brain network correla-

tions (within and between prespecified networks). Group

factor analysis provides linear factors that describe relation-

ships between groups of related variables that differs from a

traditional factor analysis by prioritizing between-group fac-

tors (Klami, Virtanen, Lepp€aaho,& Kaski, 2015). This approach

was employed by the first study published using the ABCD

dataset to examine brain measures and digital screen

engagement (Paulus et al., 2019). Applying this approach to the

current study increased interpretability of the findings and

allowed for comparisons across brain measures. Paulus et al.,

examined how brain structure (e.g. cortical thickness, surface

area, and sulcal depth) related to digital screen engagement

using GFA, whereas the current study investigated how func-

tional brain connectivity related to digital screen engagement.

While structural brain measures showed overall low correla-

tions with digital screen engagement, GFA revealed factors

with loadings that included both structural brain measures

and digital screen engagement (Paulus et al., 2019). To keep

consistent with the threshold applied in Paulus et al., 2019,

only GFA factors that accounted for >1 % of the variance

across screen time and rs-fcMRI network correlations groups

were used in the second step, namely analyses examining the

relationship between factors and functional outcomes.

In this second step of our analytic approach, these factors

were thenmodeled as predictors of functional outcomes using

Generalized Additive Mixture Modeling (GAMM). We first

examined a null model that included relevant covariates (sex

assigned at birth, ethnicity, caregiver education, and age of

the child) as fixed effects with data acquisition site and family

used as random effects. We then compared these null models

to models including digital screen engagement e rs-fcMRI

network correlation factors. Parameters were estimated

using Maximum Likelihood Estimation. The best fitting model

was determined by Akaike Information Criterion (AIC) and

likelihood ratio (LR) statistics using the heuristic of parsi-

mony. That is, the model with the lowest AIC value that was

significantly different (p < .05), as determined from LR tests,

from less complex models was chosen. These parameters of

interest from these models were then interpreted.

As outlined above, here we deviated from the original

phase 1 analysis plan to make the most of the available data.

Originally, we planned to run these models for participants

within the first release of data (ABCD Release 1.1), and tested

again on the participants in the second release of data (ABCD

Release 2.0). Any effects that did not replicate in the second

release would be interpreted as false positives obtained from

the first release. The current study still followed this plan but

expanded its scope by running themodels on the full baseline

dataset, and then testing the models again on the two-year

follow-up dataset. In essence, the current study made use of

an extra wave of data to conduct more powerful hypothesis

tests usingmore data to inform our findings. Furthermore, our

original analysis was planned for cross-sectional observa-

tional data; therefore, we did not interpret any brain pattern
as reflecting “harm,” as it is not possible to infer the direction

of the effects observed here, just relationships. We only

interpreted certain brain patterns as problematic if they were

related to lower levels of mental health or cognitive abilities.

To augment this approach, we added an exploratory analysis

section making use of the longitudinal nature of the new data

release.

Our first set of exploratory analyses employed graph theory

analysis to assess whether changes in the network structure

of brain connections over a two year period were impacted by

screen time. To conduct a longitudinal analysis, network

graphs were constructed in accordance with Tillem, Conley,

and Baskin-Sommers (2021). Each of the 13 cortical networks

included in the ABCD dataset was coded as a single node and

the correlations between networks were operationalized as

edges. rsfMRI correlations to all the subcortical regions were

averaged, creating a single node of subcortical structures. This

resulted in 14 nodes in a fully connected graph.

Graphs were assessed with clustering (a measure of global

separability of communities in the network), max degree

(denoting the node with the highest number of connections to

other nodes, acting as an integrator for the network), effi-

ciency (assessing signaling between nodes that minimizes the

number of edges), and max betweenness centrality (the node

with the most centralized location, delineating a hub of the

network). Operationalizing the functional connectome as a

network offers a number of analysis opportunities that can be

used to longitudinally model change. To assess clustering,

max degree, efficiency, and betweenness centrality for each

participant, graphs of differing densities were constructed,

simulating differing assumptions of sparsity in the brain

network. Each participant began with a minimum spanning,

fully connected graph created using Kruskal's algorithm

(Kruskal, 1956). There were 196 (14x14) possible edges con-

necting these nodes, so to simulate differing levels of sparsity,

edges were added sequentially in order of their strength

(Fisher's r-to-z score). The top 1 % of nodes were added, then

each network characteristic was calculated before adding

another 1 % of nodes and repeating the analyses. This process

repeated until the top 40 % of nodes were represented in the

network. Fig. 3 outlines this process with an example and

shows how features of the network like a two-module com-

munity of networks can evolve over this process.

This process extracted 40 values of clustering, max degree,

efficiency, and betweenness centrality for each participant.

These were plotted, and the area under the curve (AUC) for

each metric was calculated, producing a single value per

metric, per participant.

Tillem and colleagues examined the effects of conduct

disorder symptomology on functional network characteristics

in a single timepoint. This study expands upon their analysis

by creating functional connectome network simulations at

two timepoints. Thus, the difference between each metric at

timepoint 1 and 2 was regressed in a generalized linear mixed

model against total averaged screen time alongside stan-

dardized covariates for age, sex, race, parental marriage,

parental income, parental educational history, site ID, and

twin status like the GAMMs. Because the distribution of screen

time within the population was positively skewed, the data

were square root transformed prior to analysis (see OSM-3).

https://doi.org/10.1016/j.cortex.2023.09.009
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Fig. 3 e Sparsity constraints in the network modeling.
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Network measures were natural log transformed prior to re-

gressions in line with the past literature predicting these

metrics (Tillem et al., 2021; Gonzalez et al., 2016). Only par-

ticipants with two processed MRI scans were included

(n ¼ 4024). Subtracting connectivity network metrics from the

first timepoint frommetrics of the second timepoint provided

awithin-subjects difference score for eachmetric, whichwere

regressed against ST.

Our second exploratory analysis was conducted in

response to a reviewer at the second stage of the registered

report review. The reviewer noted that academic and popular

debates concerning the associations between digital technol-

ogy use and youth outcomes have changed since the time

since the stage one review was conducted. In particular, in-

terest in associations between digital screens generally and

youth outcomes has shifted to a focus on time spent on social

media. In line with this recommendation and our own reading

of the literature, we added additional analyses examining the

associations between time spent on social media and all study

outcomes to our study. These analyses extended the same

GAMMs and covariate measures from the first part of the

study, predicting cognitive and wellbeing outcomes at the 2-

year follow-up from average weekly social media usage at

baseline. Inclusion criteria were the same as the original,

preregistered analysis.
3. Results

In the following, we present our results in five steps. First, we

present the results of the screen time usage of children in the

study and characterize the correlation between digital screen

engagement variables. Second, we present the relations be-

tween digital screen engagement and brain network correla-

tions (through GFA). Third, we assessed the relationship

between brain network profiles and maladaptive functioning

by using GFA scores to predict cognitive and wellbeing out-

comes. Next, we used the recently released second timepoint

(two-year follow-up; Release 4.0) to explore how screen time

might impact the development of a functional connectome.
Finally, we use the second timepoint again to measure the

impact of social media in isolation from other screen time and

brain network variables.

3.1. Screen time behavior

The 11,309 participants with valid screen time data reported a

weekly mean screen time of 26.50 h (SD ¼ 21.52). As expected,

all individual screen activities were positively correlated with

each other. For descriptive results on participant de-

mographics, their screen time, and functional connectivity,

see the online supplementary materials (OSM-1).

3.2. Relationship between digital screen engagement
variables and brain network correlations

To extract profiles of screen media activity and functional

connectivity, we ran a group factor analysis (GFA). The GFA

identified 67 latent variables explaining the variance of screen

engagement and neural measures. Three of the latent vari-

ables explained more than 4 % of the variance and thus were

included in the rest of the analyses in accordance with the

preregistered analysis plan (https://osf.io/z4eyv). Collectively,

these three components explained 22.7 % of the total variance

between the groups and were highly orthogonal. Fig. 4 shows

that one of the GFA groupings (factor 3) explained variance

exclusively using resting state network data. Thus, in accor-

dance with the registered plan, this factor was excluded from

analysis, leaving a total of two GFA groupings of screen time

and functional network variables.

To aid in the interpretability of these groupings, we discuss

general trends in factor loadings of the remaining two GFAs.

Because each GFA grouping represents an entire network

connectome, factors with high magnitude as well as general

network-level trends are discussed. Figs. 5 and 6 depict the full

sets of factor loadings in each grouping. While reporting,

“significant” factor loadings are ones in which the 95 % con-

fidence interval for the loading lies outside the mean of the

metric, although this is done without correction for multiple

comparisons and thus should be treated with caution.

https://osf.io/z4eyv
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Fig. 4 e GFA matrix showing factor loadings of each GFA grouping. Each rectangle represents a screen time or functional

connectivity metric, with blue rectangles denoting positive correlations and red networks denoting anticorrelations.
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GFA grouping 1 (Fig. 5) explained 9.34 % of the variance

in the GFA variables. The factor loaded negatively onto all

screen media activity variables. Within the functional

connectivity metrics, there was high connectivity to and

within the ventral attention network. In general, the

default mode network had high connectivity with other

networks, and the visual cortex had several very low con-

nectivity metrics with other networks, most chiefly with

the auditory network.

GFA grouping 2 (Fig. 6) explained 8.56 % of the total vari-

ance and loaded positively onto videogame play during the

weekdays andweekends. The factor showed a clear pattern of

differential within-network connectivity. Every network

except for the salience network had lower-than-average

within-network connectivity, indicative of slightly less

modular structure of separable networks. This structure is

further exemplified with large positive factor loadings be-

tween functionally separable networks like between the dor-

sal and ventral attentional networks and between the DMN

and the DAN.

Crucially, the second timepoint of full data enabled us

to test the robustness of these groupings. GFAs create

profiles connecting screen media habits to neurological

profiles. If these factors were representative of a brain-

behavior neurodevelopmental trajectory, we would expect

them to replicate across neurodevelopment. However, a

separate GFA conducted on the same participants in the

two-year follow-up data showed that these profiles of

screen media activity and functional connectivity were not

stable across a two-year period. Though parts of the
structure of GFA 1 were replicated at the second timepoint,

functional connectivity loadings varied, and GFA 2 did not

persist to the second timepoint (see OSM-2) For a fully

detailed comparison).

3.3. Relations between brain network profiles and
maladaptive functioning

To assess whether the GFA factors predicted wellbeing or

cognitive outcomes, we estimated a series of generalized ad-

ditive mixed models (GAMMs). Despite being short-lived as a

potential organizing factor, the wellbeing and cognitive pre-

dictiveness of these factor groupings were assessed with a

GAMM and tested against a “null” GAMM that included only

covariates featured in both models: sex, ethnicity/race,

parental education (as a continuous variable representing

number of years), parental age, parental marriage status, age,

and annual family income (in four strata). Only cases with

complete data for every covariate and outcome variables were

included in the GAMMs. Missing data was mainly a result of

missing cognitive test result data. Before each model, the

sample size of included participants with full data is reported.

Because 12 separate sets of GAMMs were compared against

null models, model and coefficient significance was set at (.05/

12 ¼ .004).

3.4. Mental health outcomes

In line with our analysis plan, we analyzed the Child

Behavior Checklist divided into internalizing (anxious/

https://doi.org/10.1016/j.cortex.2023.09.009
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Fig. 5 e Factor loading with 95 % confidence interval for GFA grouping 1. Screen media variables are shown in blue, while

functional networkmetrics are shown in red. The central circle represents the normalized mean of each construct, and error

bars represent 95 % confidence intervals.
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depressed, withdrawn/depressed, and somatic complaints

scores) and externalizing (rule-breaking and aggressive

behavior) symptomatology to further examine whether

including screen media engagement in our models had pre-

dictive power.

Including GFAs in the model did not improve predic-

tive performance of the GAMM for either mental health

metric. Summary statistics for each model are reported in

Table 2, and a visual representation of the standardized

effect of each GFA on each wellbeing metric is shown in

Fig. 7.
3.5. Cognitive outcomes

Of the eight cognitive outcome metrics, GFAs only improved

prediction on one of themodels: picture vocabulary. Including

GFAs in the picture vocabulary model improved predictive-

ness from 18.4 % to 18.7 %. Though the first GFA factor was a

significant predictor in the model (b ¼ .052, p < .001), the sec-

ond GFA factor was not (b ¼ .02, p ¼ .057).

All of the remaining seven models of outcome variables

(episodic andworkingmemory, reading, inhibitory control and

selective attention, processing speed, executive functioning,

https://doi.org/10.1016/j.cortex.2023.09.009
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Fig. 6 e Factor loading with 95 % confidence interval for GFA grouping 2. Design of the plot is analogous to Fig. 5.

Table 2 e Predictive Power of GFAs in Mental Health
Outcomes. AC ¼ accounted covariance.

n ACNULL ACGFA p

Internalizing 7714 .0265 .0273 .08

Externalizing 7714 .0367 .0365 .94
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and intelligence) were not improved by adding the GFAs. The

models are summarized in Table 3 and presented visually in

Fig. 8.

3.6. Exploratory analyses of changes in network over
time

To assess longitudinal change, we calculated a series of met-

rics to characterize functional neurodevelopment. First, we
examined whether these metrics changed over a two-year

period, essentially to measure the substantial neuro-

development that had occurred over this time.We then tested

whether screen media activity had a significant predictive

power accounting for variation in these neurodevelopment

markers.

3.6.1. Changes in networks between timepoints
Collectively, the network measures suggest segregation

(clustering) and integration (max degree, efficiency, and

betweenness centrality) of the different brain networks, with

higher values on each denoting a more mature functional

architecture. Each of the network statistics positively corre-

lated between timepoints, showing that, on average, by these

metrics, children's functional connectomes developed in the

two years following their baseline functional MRI scans.

https://doi.org/10.1016/j.cortex.2023.09.009
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Fig. 7 e Standardized coefficients of the GAMMs predicting mental health outcomes for internalizing (a) and externalizing (b)

behaviors. Lines represent 95 % confidence intervals. Coefficients (from top to bottom) are: the two GFA factors, a random

number variable intended to contextualize the effect size, age, sex, race, parental marriage status, family income, parental

age, and parental education achievement.

Table 3 e Predictive Power of GFAs in Cognitive Outcomes. AC ¼ accounted covariance.

n ACNULL ACGFA p

Memory Picture Sequence 7629 .0547 .0546 .68

List Sort 7605 .0826 .0824 .60

Reading Oral Reading Recognition 7630 .0888 .0883 .49

Picture Vocabulary 7635 .184 .187 <.001*
Executive Functioning Flanker Task 7632 .0291 .0295 .06

Pattern Comparison 7616 .0347 .0344 .04

Card Sort Task 7631 .0419 .0421 .08

Fluid Intelligence Matrix Reasoning Task 7559 .0909 .0911 .15
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Importantly, there was considerable variation within the

networks, and no regression explained more than 5.2 % of the

total variation in network scores at the second timepoint. Full

statistics of the between-timepoint regressions are shown in

Table 4, and Fig. 9 depicts the associations visually.

3.6.2. Predictiveness of screen time
Fig. 10 shows kernel density estimation (kde) plots that visu-

alize the association between changes in the network statis-

tics over timewith total weekly screen time. In general, across

network metrics, there were not very strong associations be-

tween the shape of the networks over time and screen media

use. A series of generalized linear mixed models using the

same covariates as the GAMMs tested the predictiveness of ST

on these associations statistically. In themodels predicting all

four network metrics, screen time was not a significant pre-

dictor and showed an extremelymodest effect size (b between

.0067 and .025). Full details of each model can be found in the

Online Supplement.

3.7. Exploratory analyses of social media on study
outcomes

Although results from the full GAMMswith all six engagement

measures did not provide a strong basis for believing any

single screen-based activities had differential associations

with youth outcomes, we conducted a parallel series of
analyses using only time spent using social media platforms

as a predictor at the request of a reviewer. These analyses

provided b0s ranging from .013 to .026, detailed fully in the

S.O.M. (OSM-4), and indicated that estimated time spent

engaged with social media had no statistically significant as-

sociations above the smallest effect size of interest threshold

with cognitive or wellbeing outcomes. Although it is a tenta-

tive result derived from testing an exploratory question

motivated by a request from a reviewer, it nonetheless pro-

vides an interesting datapoint for those debating the putative

harmful effects of social media on young people.
4. Discussion

Adolescence is a period of rapid cognitive change accompa-

nied by systematic changes in the structural (Mills et al., 2016)

and functional (Luna, 2017, pp. 29e35) composition of the

brain. As children grow, they develop an emerging con-

nectome of functional brain networks that underpin the

development of higher order cognitive constructs like cogni-

tive control (Marek, Hwang, Foran, Hallquist, & Luna, 2015),

executive functioning (Baum et al., 2017), and sustained

attention (Rosenberg, 2016). As the prevalence of digital de-

vices among children has increased (Ofcom, 2015, 2019), the

ways in which screen time could alter these neuro-

developmental trajectories has received considerable

https://doi.org/10.1016/j.cortex.2023.09.009
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Fig. 8 e Standardized coefficients of the GAMMs predicting cognitive outcomes. Lines represent 95 % confidence intervals.

Coefficients (from top to bottom) are: the two GFA factors, a random number variable intended to contextualize the effect

size, age, sex, race, parental marriage status, family income, parental age, and parental education achievement.
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Table 4 e Results of linear regression between timepoints
of network statistics.

Network metric b for
timepoint 1

p R̂ 2 for
regression

Clustering .0855 <.001 .007

Max Degree .3007 <.001 .090

Efficiency .2280 <.001 .052

Betweenness

Centrality

.0861 <.001 .007
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academic inquiry. Due to studies with small sample sizes,

unidimensional screen time variables, and a lack of adequate

covariate considerations, there is no clear consensus on the

impact of screen media activity on development.

Using the ABCD dataset of over 10,000 children across the

US, we set out to rigorously test the extent to which functional

brain organization is related to screen activities and deter-

mine if these associations might be practically meaningful.

Our analysis of the data indicated that concerns about a

general effect across young people are not supported. We

identified two groupings with different patterns of screen

media activity and functional connectivity.
Fig. 9 e Scatterplots between timepoints
Though one group had higher screen time, these patterns

of screen-based media use did not improve our predictions of

key outcomes in our preregistered or exploratory analyses.

The first factor grouping was associated with low screen

engagement on all tenmetrics, and a highly connected ventral

attention network. The second factor loaded positively onto

videogame play during weekends and weekdays and was

associated with slightly less functional separation of brain

networks. Though prior work using GFA on neurostructural

metrics (Paulus et al., 2019) showed relatively consistent fac-

tor loadings within each GFA profile, this study revealed that

factor loadings in the functional domain are much more

varied.

These factors improve upon past research in this area by

encompassing 10 modalities of screen usage while also using

a large sample of children with a normal range of screen

usage. However, the two extracted profiles only explained

17.9 % of variability of screen time and functional connectivity

and failed to replicate in the same sample two years later,

demonstrating the instability of the brain behavioral profiles

created in the GFA process. There are two possible explana-

tions for the failure to replicate across a two-year time period:

(1) the profile of screen media activity is not a meaningful
for the different network statistics.

https://doi.org/10.1016/j.cortex.2023.09.009
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Fig. 10 e Kernel density plots showing the distribution of data for between-timepoint network statistics (natural log

transformed) and total weekly screen time (square root transformed). Darker blue areas contain more data.
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organizer of functional connectome or (2) there are non-

linearities in the relationship between screen media and

neurodevelopment that cannot be captured in two time-

points. Together, these results provide a clear pattern of re-

sults that do not support the idea of “screens changing brains”

in young people in a consistent or enduringway asmany have

proposed.

If screen time impacted the cognition of children, we ex-

pected these GFA profiles to predict observed variability across

a variety of cognitive and wellbeing outcomes. A series of

generalized additive mixed models showed that GFA group-

ings only improved prediction on one of the ten outcome

variables. Thus, even if there were profiles of screen engage-

ment and neurodevelopment, these were not meaningfully

related to most cognitive and mental wellbeing outcomes. A

study of this size is powered to detect even very small asso-

ciations, so the fact that the groupings were not significantly

predictive in 9 of 10 models is interesting in its own right. The

only significant association, GFA grouping 1 on picture vo-

cabulary scores, had a standardized effect size (b) of .052,

which did not exceed the smallest effect size of interest we set

for testing our confirmatory hypotheses. Even when including

covariates like socioeconomic status and race, GAMMs were

able to explain only between 2.73 % (internalizing) and 18.7 %

(picture vocabulary) of total variance in the outcomes. These

effects are particularly small in context; a parallel study
delineating patterns of functional connectivity to psychopa-

thology shared between 46 % and 50 % of observed variability

(Xia et al., 2018). Contextualizing the effect sizes of the GFA

groupings with the covariates demonstrates how small these

effects are, although we are cautious to commit Table 2 Fal-

lacy and directly compare the impacts (Westreich and

Greenland, 2013). These underscore the need for researchers

investigating the potential pathways linking technology to

neurodevelopmental outcomes to carefully consider and

formalize how they envision covariates figure into the causal

models they test (Magnusson, Johansson, & Przybylski, 2023).

That understood, these results show that after considering a

couple of demographic factors like socioeconomic status,

gender, and race, screen time and functional connectivity are

not substantively associated with several important cognitive

and behavioral outcomes.

To further assess potential directional effects, we con-

ducted an exploratory analysis examining whether screen

time could account for variance in changes in the network

dynamics of the brain over a two-year period. Adapting the

analysis structure from Tillem, Conley, and Baskin-Summers

(2021), we derived networks from the functional connectivity

statistics. From these networks, we estimated the neural

development of participants, summarized with four metrics

encompassing the segregation and integration of their brain

networks. Though each of the four metrics changed over a

https://doi.org/10.1016/j.cortex.2023.09.009
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two-year period, neural development was not associated

with screen engagement. Because this is a non-experimental

investigation, we cannot directly test causality, but the

absence of any correlation is a clear indicator that a causal

relationship between screen engagement and functional

brain organization over a two-year period is unlikely in this

sample.

Taken together, the two analyses conducted in this study

do not point towards a practically significant relationship

linking screen media engagement and maladaptive neuro-

development cross-sectionally or over time. This even

appeared to be the case where we specifically investigated the

associations between social media use and outcomes at the

request of a reviewer who expressed interest in us testing this

specific hypothesis. Thus, our findings do not support broad-

stroke policies centered on the notion that limiting screen

time in general, or social media specifically, could plausibly

protect neurocognitive development for young people similar

to those participating in the ABCD (i.e.with similar back-

grounds: in the United States, in early adolescence from 2016

to 2020). This pattern of findings lends further support to the

idea that negative effects of screen engagement may only

arise byway ofmore complex developmental pathways of risk

and resilience (Orben, Przybylski, Blakemore, & Kievit, 2022).

Uncovering these dynamics will require a sustained invest-

ment in research infrastructure to determine how young

people are doing with digital technology and internet plat-

forms (Johannes, Masur, Vuorre,& Przybylski, 2021; Przybylski

et al., 2021). Moving from questions concerning how much to

those about how, why, andwhat young people use technology

for. This was not and could not have been examined in the

present study.

Furthermore, although the ABCD is a uniquely rich and

detailed dataset and our analysis is exhaustive our efforts in

this study might not be sufficient to address the totality of the

question of how these ten kinds of screen based engagement

relate to neurodevelopment in late childhood. It is indeed

possible that observable changes might only be significant

across shorter or much longer time scales. Because there is a

lack of adequately powered studies of functional connectivity,

this examined whole-brain changes to explore many possible

patterns of risk, which might obfuscate smaller, individual

network-based effects. Future studies should use explicit

causal modeling to examine specific network-based develop-

mental effects. Additionally, we relied on self-report data,

which can sometimes misrepresent actual usage (Burnell,

George, Kurup, Underwood, & Ackerman, 2021; Hodes &

Thomas, 2021), particularly among children (Koojmans,

Langdon, and Moonen, 2022). Future study could enrich data

sources like ABCDwith digital trace data that more accurately

reflects the ways that young people are interacting with

screen-based media.
5. Closing

The impact of screen engagement on neurodevelopment in

children and adolescents has been a topic of much inquiry.

We examined how screen engagement relates to functional

brain connectivity in a large sample of U.S. children between
ages 9e12 years. While patterns of functional brain connec-

tivity were related to pattern of screen engagement, we found

no meaningful associations between overall profiles and

measures of cognitive andmental wellbeing, even if we set the

evidential threshold very low. Overall, this study does not

support policies centered around limiting screen time to

protect neurocognitive development.
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