Eklutna Fish & Wildlife Program Background Briefing

August 8, 2023

Agenda

- Project Location
- History of Development
- 1991 Fish and Wildlife Agreement
- Early Consultation
- Study Planning & Implementation
- Study Results
- Alternatives Analysis
- Next Steps

Project Location

N Project Location

History of Development

M History of Development

1991 Fish and Wildlife Agreement

N Requirements

Studies must examine and quantify if possible...

- 1. The project's impacts to fish and wildlife
- 2. Potential protection, mitigation, and enhancement measures for fish and wildlife
- 3. Consider the impact of fish and wildlife measures on electric rate payers, municipal water utilities, recreational users, and adjacent land use
- 4. As well as available means to mitigate those impacts

N Requirements

Governor must give equal consideration to...

- 1. Purposes of efficient and economical power production
- 2. Energy conservation
- 3. Fish and wildlife
- 4. Protection of recreation opportunities
- 5. Municipal water supplies
- 6. Preservation of other aspects of environmental quality
- 7. Other beneficial public uses
- 8. Requirements of State law

Requirements

- 1997 Transaction Date
- **2022** Initiate the consultation process no later than 25 years after the transaction date
- 2024 Issuance of the Final F&W Program by the Governor at least 3 years prior to implementation
- 2027 Begin implementation of the F&W Program no later than 30 years after the transaction date
- **2032** Complete implementation of the F&W Program no later than 35 years after the transaction date

Early Consultation

Initiated Consultation in 2019

- Native Village of Eklutna (NVE)
- Eklutna, Inc.
- Alaska Department of Fish and Game (ADFG)*
- Alaska Department of Environmental Conservation (ADEC)*
- Alaska Department of Natural Resources (ADNR)*
 - Water Resources Section
 - Chugach State Park
 - Office of History and Archaeology
- National Marine Fisheries Service (NMFS)*
- U.S. Fish and Wildlife Service (USFWS)*
- U.S. Army Corps of Engineers (USACE)
- Anchorage Water and Wastewater Utility (AWWU)
- Alaska Department of Transportation & Public Facilities (ADOT&PF)
- Alaska Railroad Corporation (ARRC)
- The Conservation Fund

*Consultation required by the 1991 Agreement

Initial Information Package

- Compiled all relevant existing information into one comprehensive summary document
- Draft version distributed in March 2020 for review and comment
- Stakeholder meeting in April 2020 to review the draft
- Final version and all reference documents are available on the project website <u>www.eklutnahydro.com</u>

Study Planning & Implementation

M Technical Working Groups

Entity	Aquatics	Terrestrial	Recreation	Cultural
Native Village of Eklutna	х	Х	Х	х
Alaska Department of Fish and Game	х	х	х	
ADNR Chugach State Park			х	
ADNR Office of History and Archaeology				х
U.S. Fish and Wildlife Service	х	Х		х
National Marine Fisheries Service	х			
Trout Unlimited	х		х	
Alaska Pacific University	х	х		
Hydropower Project Owners	х	Х	х	х

Year 1 Study Planning

- September 2020 TWG meeting to review study program framework
- October 2020 Distributed draft study plans for review
- November 2020 TWG meeting to review comments
- January 2021 Distributed revised draft study plans for review
- January 2021 TWG meeting to review major revisions
- February 2021 Distributed proposed final study plans to parties
- March/April 2021 Received concurrence from all parties
- May 2021 Initiated field work

M Year 1 Study Program

- Instream Flow Study
- Geomorphology Study
- Lake Fish Study
- River Fish Study
- Macroinvertebrate Study

- Water Quality Study
- Stream Gaging
- Lakeside Trail Erosion Study
- Infrastructure Assessment
- Hydro Operations Model

M Gate Replacement

M Study Flow Releases

M Study Flow Releases

Year 2 Study Planning

- November 2021 TWG meetings to review study program framework
- February 2022 Distributed draft year 2 study plans for review
 - Also distributed draft year 1 study reports for review
- March 2022 TWG meetings to review comments
- April 2022 Distributed proposed final year 2 study plans to parties
 - Received concurrence from all parties
 - NMFS and USFWS did not concur w/ Instream Flow or Geomorphology Studies
 - This was due to a request for a higher calibration flow which the hydro project owners determined was not necessary
 - This issue has since been resolved
- May 2022 Initiated field work

M Year 2 Study Program

- Instream Flow Study (cont.)
- Geomorphology Study (cont.)
- Lake Fish Study (cont.)
- River Fish Study (cont.)
- Water Quality Study (cont.)
- Stream Gaging (cont.)

- Wetlands and Wildlife Habitat Mapping
- Terrestrial Wildlife Surveys
- Recreation Study
- Cultural Resources Study
- Engineering Feasibility and Cost Assessment
- Hydro Valuation Study

Study Results

Phase 1 Engineering

- 1. Instream Flow Measures
- 2. Upstream Fish Passage Measures
- 3. Downstream Fish Passage Measures
- 4. Peak Flow Measures
- 5. Instream Flow Improvements
- 6. Physical Habitat Improvements
- 7. Infrastructural Improvements
- 8. Replacement Dam

Phase 1 Engineering

- 1. Instream Flow Measures
- 2. Upstream Fish Passage Measures
- 3. Downstream Fish Passage Measures
- 4. Peak Flow Measures
- 5. Instream Flow Improvements
- 6. Physical Habitat Improvements
- 7. Infrastructural Improvements
- 8. Replacement Dam

Class 5 Opinion of Probable Construction Costs

Class 5 OPCC – Replacement Dam

- Indirect Costs (Mobilization / General Requirements)
 - \$16M
- Site Construction / Access Roads
 - \$1M
- Channel Excavation Haul
 - \$40M
- Dam Construction w/ Fishway
 - \$20M
- Electrical/Transmission
 - \$3M
- Overhead, Profit, & Bonds
 - \$13M
- Contingency
 - \$23M
- Construction Price
 - \$115M (\$60M \$227M)
Existing Dam Release w/ No Fish Passage

Existing Dam Release w/ Variable Exit Fishway

N Replacement Dam

AWWU Portal/Pipeline & Bypass Tunnel

Downstream Fish Passage – Dam Release

Downstream Fish Passage – Floating Surface Collector

Winter Flow Analysis

<u>Criteria</u>

Using 1D River Model (236 Transects):

Determine Number of Transects with: v < 2.0 ft/s $d \ge 15$ "

Passage Barrier Analysis

	Site A	Site B	Site C	Site D	Site E
Minimum passage Q (cfs)	40.0	50.0	8.8	40.0	40.0
Velocity at critical transect (ft/s)	8.35	6.25	4.71	4.340	3.76
Depth at critical transect (ft)	0.62	0.57	0.69	0.600	0.43
Froude at critical transect	1.90	1.50	1.00	0.990	1.01
Potential barrier average slope (ft/ft)	0.16	0.14	0.087	0.068	0.12
Passage barrier type	Depth	Depth	Depth	Depth	Depth

Barrier D

CONFIDENTIAL – SUBJECT TO COMMON INTEREST AGREEMENT CONFIDENTIAL ATTORNEY-CLIENT PRIVILEGED MATERIAL

Instream Flow Study – Chinook Spawning Habitat

Instream Flow Study – Coho Spawning Habitat

M Adult Salmon Counts

2021				2022					
Date	Chinook	Coho	Chum	Pink	Date	Chinook	Coho	Chum	Pink
7/9/2021	0	0	0	0	7/8/2022	0	0	0	0
7/16/2021	0	0	0	0	7/16/2022	1	0	0	0
7/22/2021	7	0	0	0	7/25/2022	0	0	0	0
7/31/2021	9	0	0	17	8/1/2022	0	0	0	27
8/6/2021	2	0	0	61	8/8/2022	0	0	0	0
8/11/2021	0	0	0	65	8/15/2022	1	0	0	19
8/20/2021	0	0	3	120	8/22/2022	4	2	0	16
8/26/2021	0	0	1	13	8/29/2022 ^B		-	-	-
9/3/2021	1	3	1	1	9/6/2022	0	4	4	0
9/11/2021	0	4	0	-	9/13/2022	0	3	2	0
9/18/2021 ^A	0	3	0	-	9/19/2022 ^B	-	-	-	-
9/23/2021 ^A	0	0	0	0	9/26/2022	0	1	0	0
9/29/2021	0	2	0	0	10/3/2022	0	0	0	0
10/5/2021	0	0	0	0	10/11/2022 ^B	-	-	-	-
10/14/2021	0	2	0	0	10/17/2022	0	6	0	0
10/22/2028	0	0	0	0	10/24/2022	0	2	0	0
Total Fish	19	14	5	277	Total Fish	6	18	6	62
Notes: A) Only Thunderbird surveyed due to study flow releases; B) Dangerous conditions due to rainfall/									

flooding

M Spawning Distribution in 2021

Sources: USGS, ADNR, ESRI

0.5

Rivers

Chugach State Park

2 Miles

1 redd

0

0

1-5 redds

6-10 redds

11-30 redds

31-68 redds

MEA

CHUGAC

Spawning Distribution in 2022

N Potential Flow Regimes

Chinook Spawning Flows

Coho Spawning Flows

III Eklutna River Habitat Gains

Scenario		Time-Averaged Habitat (%)						
		Chinook		Coho		Sockeye		
		Spawning	Juvenile Rearing	Spawning	Juvenile Rearing	Spawning		
Habitat Improvement (%)	Dam Release	Flow Level 1	227%	75%	89%	90%	75%	
		Flow Level 2	240%	84%	92%	99%	78%	
		Flow Level 3	254%	92%	94%	108%	77%	
		Flow Level 4	254%	99%	94%	115%	74%	
		Flow Level 5	265%	104%	93%	122%	71%	
		Flow Level 6	274%	110%	93%	128%	67%	
		Flow Level 7	280%	116%	91%	136%	62%	
	Portal Release	Flow Level 1	209%	53%	65%	67%	58%	
		Flow Level 2	215%	61%	65%	75%	57%	
		Flow Level 3	221%	69%	65%	83%	54%	
	Pipeline Release	Flow Level 1	48%	28%	32%	32%	35%	
		Flow Level 2	44%	35%	31%	39%	33%	
		Flow Level 3	42%	42%	29%	45%	30%	

M Channel Maintenance Flows

Flow Levels 1-3

Channel Maintenance Flow = 220/325/400 cfs - 72 Hr Shaped - Every 3 Years

Flow Levels 4-7

Channel Maintenance Flow = 450/500/550/600 cfs - 72 Hr Shaped - Every 3 Years

Mainstem Spawning Habitat Survey Area

M West Fork Eklutna Creek Survey

M Lake Shoreline Habitat

M Lake Productivity

Sample Source	Chlorophyll <i>a</i> (ug/l)	Total Phosphorus (mg/l)	Secchi Depth (m)	TSI Value*		
Eklutna Lake (2021)	0.29	<0.04	0.85	18.5		
Eklutna Pond (2021)	0.47	<0.04	2.04	23.2		
Eklutna Lake (2022)	0.13	not collected	not collected	10.6		
Eklutna Pond (2022)	0.12	not collected	not collected	9.8		
* Calculation Equation: TSI = 9.81* In(CHL a) + 30.6						

- All Trophic Status Index (TSI) values are low (<30) which indicates low primary productivity (oligotrophic status)
- Most likely due to nutrient deficiency and/or turbidity from glacial flour limiting light penetration
- Low primary productivity (phytoplankton) indicates limited secondary production (zooplankton)

M Kokanee

A hooked-jawed, 13-inch male kokanee in spawning color.

Typical 5-inch kokanee from Eklutna Lake

M Eklutna Lake Habitat Gains

Fish Passage:

<u>(E. & W. Forks Eklutna Creek)</u> Spawning Habitat: Rearing Habitat:

. 1.145 Acres (50% Suitability) Unknown

<u>(Eklutna Lake Shoreline)</u> Spawning Habitat: Spawning Habitat: Rearing Habitat:

2.6 Acres (w/o Fluctuation)0.03 Acres (w Existing Fluctuation)Low Productivity

Alternatives Analysis

M Stakeholder Engagement

Received ~36 total comprehensive alternatives from the following entities:

- Native Village of Eklutna (NVE)
- Alaska Department of Fish and Game (ADFG)
- Chugach State Park (ADNR)
- National Marine Fisheries Service (NMFS)
- U.S. Fish & Wildlife Service (USFWS)
- Trout Unlimited (TU)
- The Conservation Fund (TCF)
- Hydro Project Owners (CEA/MEA/MOA)

Note: ADNR Dam Safety has no comments on flow regime but will have input on any modifications to the dam and appurtenant structures.

M Stakeholder Preferred Alternatives

Native Village of Eklutna

• Replacement Dam / US Passage / DS Passage Spill 3 Months / Infrastructure Improvements

<u>USFWS</u>

- Plan A Replacement Dam / US Passage / DS Passage FSC / Infrastructure Improvements
- Plan B Existing Dam / FWG / US Passage / DS Passage FSC / Infrastructure Improvements
- Plan C Existing Dam / FWG / No Passage / Infrastructure Improvements
- Plan D AWWU Portal / FWG / No Passage / Infrastructure Improvements

The Conservation Fund

- Plan A Replacement Dam / US Passage / DS Passage Spill 3 Months / Infrastructure Improvements
- Plan B Existing Dam / FWG / US Passage / DS Passage FSC / Infrastructure Improvements

<u>NMFS</u>

- Plan A Replacement Dam / US Passage / DS Passage FSC / Infrastructure Improvements
- Plan B AWWU Portal / FWG / No Passage / Infrastructure Improvements

<u>ADFG</u>

• AWWU Portal / No Passage / Infrastructure Improvements

Hydro Project Owners

• AWWU Portal / No Passage / Infrastructure Improvements

ADNR – State Parks

• AWWU Portal / No Passage / Infrastructure Improvements

Preferred Flow Regimes

Annualized Costs / Present Value

■ CAPEX TIER ■ Replacement Energy ■ O&M

M Chugach Electric Ratepayer Impacts

Matanuska Electric Ratepayer Impacts

MOA Property Tax Impacts

Cost Effectiveness – Chinook Spawning Habitat

Cost Effectiveness – Chinook Spawning Habitat

Cost Effective Alternatives for Habitat Gains

- AWWU Portal Flow Level 1
 - Owner/ADNR Alternative
 - Annual Costs \$2.8M
 - Habitat Gains 1.5 Acres
 - \$1.9M/Acre
- AWWU Portal Flow Level 2
 - ADFG Alternative
 - Annual Costs \$4.0M
 - Habitat Gains 1.5 Acres
 - \$2.6M/Acre
- AWWU Portal Flow Level 3
 - ADFG/NMFS Alternative
 - Annual Costs \$4.4M
 - Habitat Gains 1.6 Acres
 - \$2.8M/Acre

- Dam Release USFWS Alt 1 Regime
 - USFWS Alternative
 - Annual Costs \$9.0M
 - Habitat Gains 2.0 Acres
 - \$4.6M/Acre
- Variable Exit Fishway TCF Regime
 - TCF Alternative
 - Annual Costs \$11.8M
 - Habitat Gains 4.8 Acres
 - \$2.5M/Acre
- Variable Exit Fishway USFWS Alt 1 Regime
 - USFWS Alternative
 - Annual Costs \$18.9M
 - Habitat Gains 4.9 Acres
 - \$3.8M/Acre
M Alternatives Analysis Meeting 4

- Presented everyone's preferred alternative(s)
- Presented results for potential velocity barriers in the canyon reach
- Discussed potential positive and negative impacts to:
 - Wetlands and Wildlife Habitat
 - Public Water Supply
 - Recreational Facilities and Uses

Next Steps

Next Steps

- August 2023 Alternatives Analysis Meeting 5
 - Discuss cultural resources
 - Discuss an appropriate monitoring program and adaptive management approach
- October 2023 Distribute Draft Fish and Wildlife Program
 - 30 days for review and comment
 - Attempt to resolve differences
- January 2024 Public Meetings (Anchorage and Mat-Su Valley)
- April 2024 Submit Proposed Final Fish and Wildlife Program
 - 60 days for parties to review and comment
 - 30 days for project owners to respond
 - Allows 2 months for Governor to consider
- October 2024 Governor issues Final Fish and Wildlife Program

