Title
Automatic Execution of Code Upon Package

Download on Python Package Manager

Subtitle/description Automatic code execution is triggered upon downloading close to a
(short - 1 line) third of the packages on PyPi.

Author Yehuda Gelb

Co-author(s) Aviad Gershon

Automatic code execution is triggered upon downloading approximately one third of the
packages on PyPi.

A worrying feature in pip/PyPi allows code to automatically run when developers are merely
downloading a package.

This feature is also alarming due to the fact that a large number of the malicious packages we
are finding in the wild use this feature of code execution upon installation to achieve higher
infection rates.

It is important that Python developers understand that package downloading can expose them
to increased risk of a supply chain attack.

Intro
When executing the well-known “pip install <package_name>" command, users may expect code to be

run on their machine as part of the installation process. One source of such code usually resides in the
setup.py file of Python packages.

When a Python package is installed, pip, Python’s package manager, tries to collect and process the
metadata of this package, such as its version and the dependencies it needs in order to work properly.
This process occurs automatically in the background by pip running the main setup.py script that comes
as part of the package structure.

from setuptools import setup, find_packages
from os import path
from codecs import open

with open(path.join(SCRIPT_DIR, 'README.md'), encoding='utf-8') as f:
long_description = f.read()

setup(

name='prpl',

python_requires='>=2",

version="1.0.5",

description='This package is a part of Checkmarx SCS research process regarding issue

#1884 ',

long_description_content_type='text/markdown',

long_description=long_description,

url="https://github.com/checkmarx’,

author="'Checkmarx SCS Research',

author_email='supplychainsecurity@checkmarx.com',

license="'Apache v2',

classifiers=[
'Development Status :: 5 - Production/Stable’,
'Intended Audience :: Developers',
'Topic :: Software Development :: Build Tools',
'License :: O0SI Approved :: Apache Software License',
'Programming Language :: Python :: 2',
'Programming Language :: Python :: 2.5',
'Programming Language :: Python :: 2.6',
'Programming Language :: Python ::
'Programming Language :: Python ::
'Programming Language :: Python ::
'Programming Language :: Python ::
'Programming Language :: Python ::
'Programming Language :: Python ::
'Programming Language :: Python ::
'Programming Language :: Python ::
'Programming Language :: Python ::

N
~l

wwwwwwww

1,

keywords="prpl Checkmarx SCS research',
packages=['prpl'],
setup_requires=['requests'],
install_requires=['requests’]

setup.py example

The purpose of setup.py is to provide a data structure for the package manager to understand
how to handle the package.

However, the setup.py file is still a regular Python script that can contain any code the
developer of the package would like. An attacker who understands this process can plant
malicious code in the setup.py file, which would then execute automatically during the
package’s installation. In fact, much of the malicious packages we are detecting contain
malicious code in the setup.py file.

What if we just download the package rather than installing it?

In addition to the “install” command, pip provides several more options, among them is the
“download” command. This command is intended to allow users to download packages’ files
without the need to install them.

There could be various reasons someone would need this. A developer may want to look into
the package’s code before using it. A user may want or need to perform a security check, or
perhaps even observe the setup.py file for any anomalies.

As it turns out, executing the command “Pip download <package_name>" will run the setup.py
file, as well as any potentially malicious code contained within it. It may surprise you, but this
behavior is not a bug but rather a feature in the pip design. Users who intentionally only
download a package do not expect code to run on their system automatically.

As a matter of fact, this concern was expressed in an issue from 2014 on the pypa project
https://github.com/pypa/pip/issues/1884, yet it was not addressed, and the issue continues to
exist to this day.

The .whl file type

Python wheels are essentially .whl files that are part of the Python ecosystem and bring various
performance benefits to the package installation process. But that is not the only thing that
wheels bring to the table. In the past, when Python code was built into a package, the result
would be a tar.gz file that would then be published to the PyPi platform.

But suppose you've recently tried downloading or installing a Python package using pip. In that
case, you may have noticed Python supplying you with a .whl file. The reason for this is when
developers build a Python package using, for example, the "pip -m build" command, in newer
pip versions, pip automatically tries to create a secondary .whl file in addition to the tar.gz file,
which is then published together to the Python Package manager platform. When a user
downloads or installs this package, PIP will by default deliver the .whl file to the user's machine.
The way wheels work cuts the setup.py execution out of the equation.

Why is the setup.py still relevant?

Even though pip defaults to using wheels instead of tar.gz files, malicious actors can still
intentionally publish Python packages without a .whl file. When a user downloads a Python
package from PyPi, pip will preferentially use the .whl file, but will fall back to the tar.gz file if
the .whl file is lacking.

https://github.com/pypa/pip/issues/1884
https://realpython.com/what-is-pip/

Is there anything you can do about this?

Currently, there are actions users can take to prevent automatic execution upon package
download. One action is checking the package file contents

at https://pypi.org/project/<package>/#files and observing if a .whl file is present. If there is a
.whl file, the user can feel confident they will receive the .whl file, and no code will be executed
on their machine.

lalp Sponsors Login Register

prpl1.0.5 numpy 1.23.1

pip install prpl: &

pip install numpy==1.23.1 @

KumPyis the fundamental package for array computingvith Python.

This package Is a part of Dustics research process reganding lssue #1894

Download files

Navigation Download files

= Projestdescription

Download e fie fer your platform. I you renotsure which to choose, leain more about installing peckeges Source Distribution

U pel 25,0 tarngz 12,7 M view rashes)

Source Distribution

DIpL-L0.5 tarzr (5.4 kB view hashes)

Uploated fan 27,2921 s0urce

prpl-1.0.5tar.gz (6.4 kB view hashes) Uploaded Juls, 2022 pp3s

Uploaded Jan 27,2021 |source numpy-1.23.1-pp38-pypy38 pp73-manylinux 2 17 x86 64.manylinu2014_x86_64.whl {165 MB view hashes)

Uploaded hulg, 2022 pp38&

numMpy-1.73.1-pp38-pypy38_ppT3-macosx 10_9 x86_64.whl (17.5 MB view hashes)

Uploaded Jul9, 2022 pp38

If there is only a tar.gz present, a user can use a safe method of download such as working

directly with PyPi's "simple" API: https://pypi.org/simple/<package-name>/ . For example,
when using the package listed above, prp1, a user can download it from the following link
https://pypi.org/simple/prp1/.

https://pypi.org/simple/prp1/
https://pypi.org/simple/%3Cpackage-name%3E/

< C & pypiorg/simple/prpl/

Links for prpl

prpl-1.0.0-pv2.pv3-none-any.whi
prpl-1.0.1-pv2 pv3-none-any.whl
prpl-1.0.2-pyv2 py3-none-any.whl
prpl-1.0.3-pv2.pv3-none-any.whi
prpl-1.0 4-pv2 pv3-none-any.whi
prpl-1.05 tar gz

Conclusion

Code execution upon installation is one of the features attackers use the most in open-source
attacks. Developers opting to download, instead of installing, packages,are reasonably
expecting that no code will run on the machine upon downloading the files. However, PyPi
includes a feature allowing just that—execution of code on the user’s machine when all that
was requested was a file download.

It is possible to protect yourselves from suspicious package by following the steps detailed
above.

As always, we are releasing similar blogs to help keep the open source ecosystem safe and raise
the awareness of Python developers to this issue so they can avoid unwanted consequences.

	Intro
	What if we just download the package rather than installing it?
	The .whl file type
	Why is the setup.py still relevant?
	Is there anything you can do about this?
	Conclusion

