
Title

Automatic Execution of Code Upon Package
Download on Python Package Manager

Subtitle/description

(short - 1 line)

Automatic code execution is triggered upon downloading close to a

third of the packages on PyPi.

Author Yehuda Gelb

Co-author(s) Aviad Gershon

Automatic code execution is triggered upon downloading approximately one third of the

packages on PyPi.

A worrying feature in pip/PyPi allows code to automatically run when developers are merely

downloading a package.

This feature is also alarming due to the fact that a large number of the malicious packages we

are finding in the wild use this feature of code execution upon installation to achieve higher

infection rates.

It is important that Python developers understand that package downloading can expose them

to increased risk of a supply chain attack.

Intro
When executing the well-known “pip install <package_name>” command, users may expect code to be

run on their machine as part of the installation process. One source of such code usually resides in the

setup.py file of Python packages.

When a Python package is installed, pip, Python’s package manager, tries to collect and process the

metadata of this package, such as its version and the dependencies it needs in order to work properly.

This process occurs automatically in the background by pip running the main setup.py script that comes

as part of the package structure.

setup.py example

The purpose of setup.py is to provide a data structure for the package manager to understand

how to handle the package.

However, the setup.py file is still a regular Python script that can contain any code the

developer of the package would like. An attacker who understands this process can plant

malicious code in the setup.py file, which would then execute automatically during the

package’s installation. In fact, much of the malicious packages we are detecting contain

malicious code in the setup.py file.

What if we just download the package rather than installing it?
In addition to the “install” command, pip provides several more options, among them is the

“download” command. This command is intended to allow users to download packages’ files

without the need to install them.

There could be various reasons someone would need this. A developer may want to look into

the package’s code before using it. A user may want or need to perform a security check, or

perhaps even observe the setup.py file for any anomalies.

As it turns out, executing the command “Pip download <package_name>” will run the setup.py

file, as well as any potentially malicious code contained within it. It may surprise you, but this

behavior is not a bug but rather a feature in the pip design. Users who intentionally only

download a package do not expect code to run on their system automatically.

As a matter of fact, this concern was expressed in an issue from 2014 on the pypa project

https://github.com/pypa/pip/issues/1884, yet it was not addressed, and the issue continues to

exist to this day.

The .whl file type
Python wheels are essentially .whl files that are part of the Python ecosystem and bring various

performance benefits to the package installation process. But that is not the only thing that

wheels bring to the table. In the past, when Python code was built into a package, the result

would be a tar.gz file that would then be published to the PyPi platform.

But suppose you've recently tried downloading or installing a Python package using pip. In that

case, you may have noticed Python supplying you with a .whl file. The reason for this is when

developers build a Python package using, for example, the "pip -m build" command, in newer

pip versions, pip automatically tries to create a secondary .whl file in addition to the tar.gz file,

which is then published together to the Python Package manager platform. When a user

downloads or installs this package, PIP will by default deliver the .whl file to the user's machine.

The way wheels work cuts the setup.py execution out of the equation.

Why is the setup.py still relevant?
Even though pip defaults to using wheels instead of tar.gz files, malicious actors can still

intentionally publish Python packages without a .whl file. When a user downloads a Python

package from PyPi, pip will preferentially use the .whl file, but will fall back to the tar.gz file if

the .whl file is lacking.

https://github.com/pypa/pip/issues/1884
https://realpython.com/what-is-pip/

Is there anything you can do about this?

Currently, there are actions users can take to prevent automatic execution upon package

download. One action is checking the package file contents

at https://pypi.org/project/<package>/#files and observing if a .whl file is present. If there is a

.whl file, the user can feel confident they will receive the .whl file, and no code will be executed

on their machine.

If there is only a tar.gz present, a user can use a safe method of download such as working

directly with PyPi's "simple" API: https://pypi.org/simple/<package-name>/ . For example,

when using the package listed above, prp1, a user can download it from the following link

https://pypi.org/simple/prp1/.

https://pypi.org/simple/prp1/
https://pypi.org/simple/%3Cpackage-name%3E/

Conclusion

Code execution upon installation is one of the features attackers use the most in open-source

attacks. Developers opting to download, instead of installing, packages,are reasonably

expecting that no code will run on the machine upon downloading the files. However, PyPi

includes a feature allowing just that—execution of code on the user’s machine when all that

was requested was a file download.

It is possible to protect yourselves from suspicious package by following the steps detailed

above.

As always, we are releasing similar blogs to help keep the open source ecosystem safe and raise

the awareness of Python developers to this issue so they can avoid unwanted consequences.

	Intro
	What if we just download the package rather than installing it?
	The .whl file type
	Why is the setup.py still relevant?
	Is there anything you can do about this?
	Conclusion

