

## Welcome to Cloud OnBoard

Big Data and Machine Learning



Google Cloud

#### Welcome



Yoram Ben-Yaacov Strategic Cloud Engineer



Anat Perly Strategic Cloud Engineer



Cloud OnBoard

### An explosion of data



By 2020, some 50 billion smart devices will be connected, along with additional billions of smart sensors, ensuring that the global supply of data will continue to more than double every two years"



https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/straight-talk-about-big-data

#### An explosion of data



... and only about 1% of the data generated today is actually analyzed"



https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/straight-talk-about-big-data

#### There is a great demand for data skills





#### **Big Data Challenges**







## Agenda

- Intro to Google Cloud Platform infrastructure
- Big data products:
  - Pub/Sub
  - Dataflow
  - BigQuery
- ML products:
  - ML APIs
  - AutoML
  - BigQuery ML



### Module 1 Intro to GCP





## Agenda

Intro to Google Cloud Platform infrastructure

#### • Big data products:

- Pub/Sub
- Dataflow
- BigQuery
- ML products:
  - ML APIs
  - AutoML
  - BigQuery ML



#### **Built on Google infrastructure**

This is what makes Google Google: its physical network, its thousands of fiber miles, and those many thousands of servers that, in aggregate, add up to the mother of all clouds."

Wired







| Big Data and ML Products |         |            |  |  |  |  |  |
|--------------------------|---------|------------|--|--|--|--|--|
| Compute Power            | Storage | Networking |  |  |  |  |  |
| Security                 |         |            |  |  |  |  |  |











# Machine Learning Models require significant compute resources

Shown: Automatic **Video Stabilization** for Google Photos

Data sources:

- Image frames (stills from video)
- Phone gyroscope
- Lens motion





### A single high-res image represents millions of data points to learn

8 Megapixel resolution

3264 (w)x2448 (h)x3(RGB) = 23,970,816 data points per image\*

\* More data = longer model training times + more storage needed



3 "Layers" in depth for Red Blue Green



#### **Google Photos**

How many photos are uploaded daily to Google Photos?



#### Youtube

How many hours of video are uploaded every minute to YouTube?













**Google Photos** 

28 billion photos and videos are uploaded to Google Photos every day.

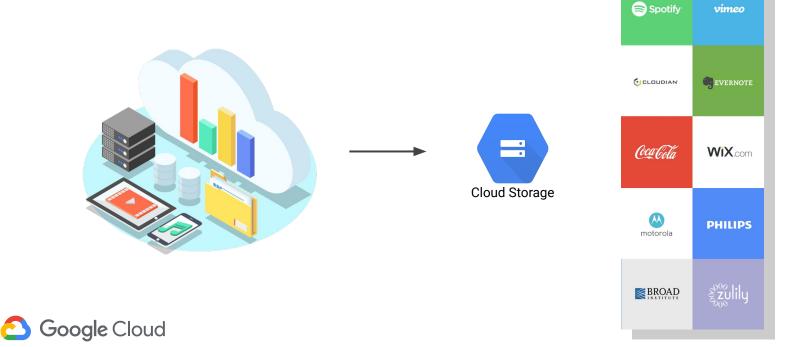


#### Youtube

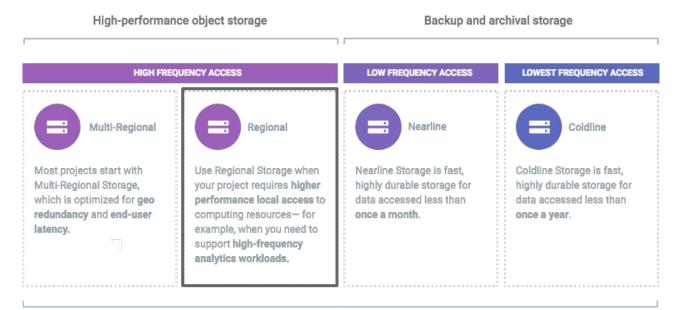
Over 1.3PB or 500 hours of video uploaded every minute



### Leverage Google's 99.9999999% durability storage

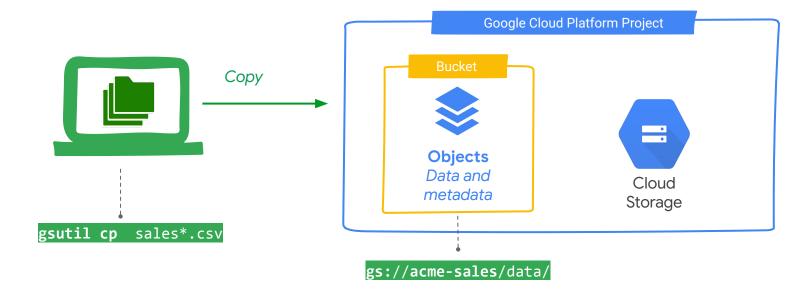


#### Typical big data analytics workloads run in Regional Storage



A single API for all storage classes

# Got data? Quickly migrate your data to the cloud using gsutil tool





gsutil = google storage utility, cp = copy









# Google's private network carries as much as 40% of the world's internet traffic every day





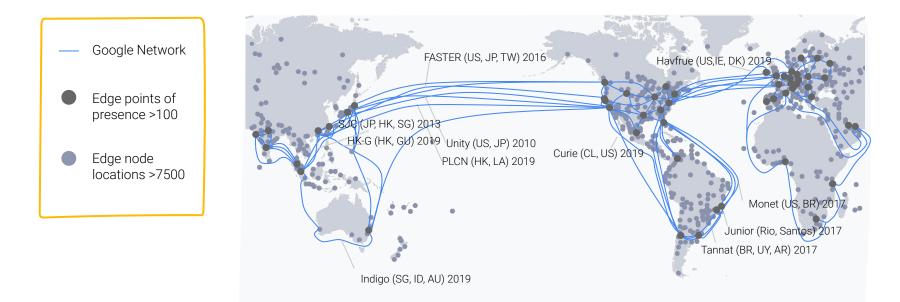
# Google's data center network speed enables the separation of compute and storage



1 Petabit/sec of total bisection bandwidth



#### Google's cable network spans the globe













### On-premise $\rightarrow$ you manage all security layers

| Responsibility            | On-<br>premises |
|---------------------------|-----------------|
| Content                   |                 |
| Access policies           |                 |
| Usage                     |                 |
| Deployment                |                 |
| Web application security  |                 |
| Identity                  |                 |
| Operations                |                 |
| Access and authentication |                 |
| Network security          |                 |
| OS, data, and content     |                 |
| Audit logging             |                 |
| Network                   |                 |
| Storage and encryption    |                 |
| Hardware                  |                 |



### On-premise $\rightarrow$ you manage all security layers

You manage

Google Managed

| $\bigcirc$ | Google | Cloud |
|------------|--------|-------|
|------------|--------|-------|

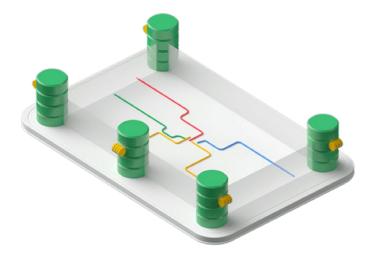
| Responsibility            | On-<br>premises | Infrastructure<br>as a Service | Platform as a<br>Service | Managed<br>services |
|---------------------------|-----------------|--------------------------------|--------------------------|---------------------|
| Content                   |                 |                                |                          |                     |
| Access policies           |                 |                                |                          |                     |
| Usage                     |                 |                                |                          |                     |
| Deployment                |                 |                                |                          |                     |
| Web application security  |                 |                                |                          |                     |
| Identity                  |                 |                                |                          |                     |
| Operations                |                 |                                |                          |                     |
| Access and authentication |                 |                                |                          |                     |
| Network security          |                 |                                |                          |                     |
| OS, data, and content     |                 |                                |                          |                     |
| Audit logging             |                 |                                |                          |                     |
| Network                   |                 |                                |                          |                     |
| Storage and encryption    |                 |                                |                          |                     |
| Hardware                  |                 |                                |                          |                     |

#### Communications to Google Cloud are encrypted in transit



- In-transit encryption
- Multiple layers of security
- Backed by Google security teams 24/7

#### Stored data is encrypted at rest and distributed



- Data automatically encrypted at rest
- Distributed for availability and reliability

## Module 2 Big data products





**Cloud OnBoard** 

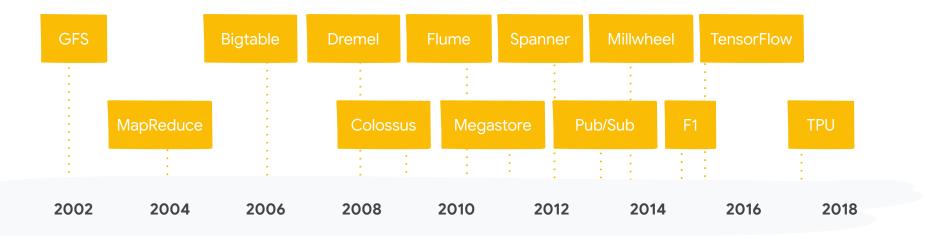
## Agenda

Intro to Google Cloud Platform infrastructure

- Big data products:
  - **Pub/Sub**
  - **Dataflow**
  - **BigQuery**
- ML products:
  - ML APIs
  - AutoML
  - BigQuery ML

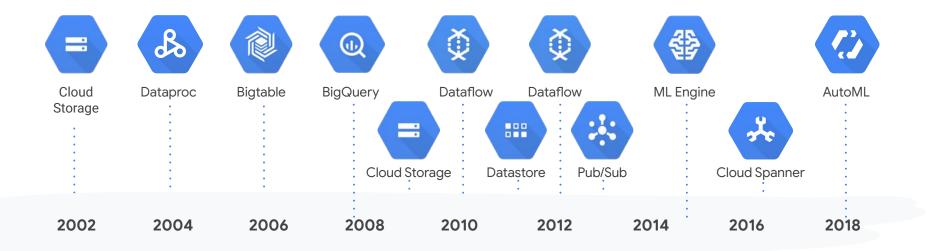


# Google invented new data processing methods as it grew

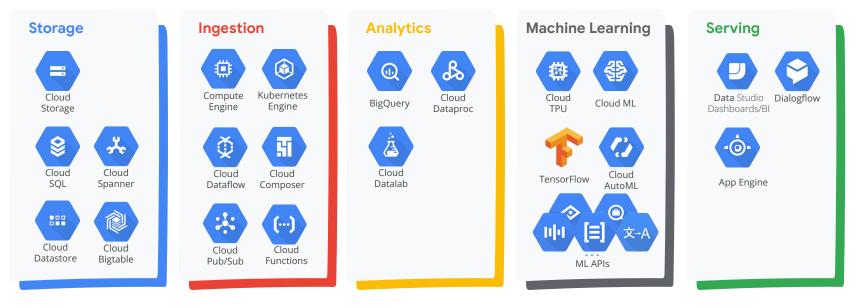




# Google Cloud opens up that innovation and infrastructure to you

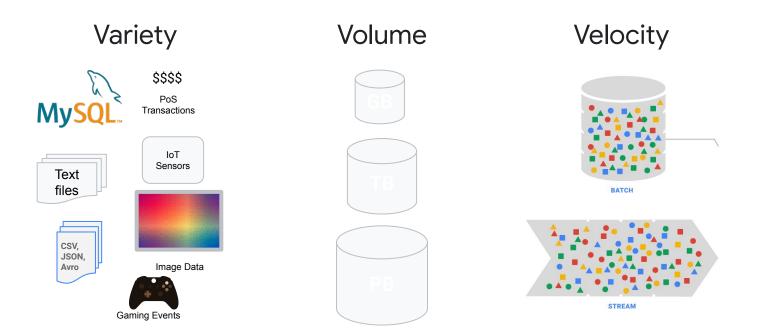


### The suite of big data products on Google Cloud Platform





Modern big data pipelines face many challenges

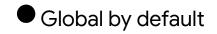


Cloud Pub/Sub offers reliable, real-time messaging

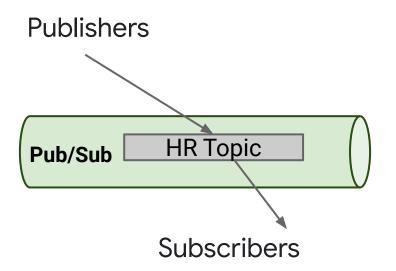
#### Distributed Messaging with Cloud Pub/Sub

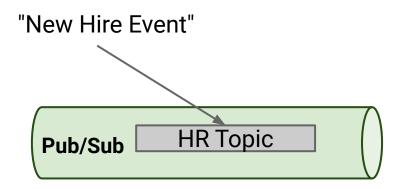


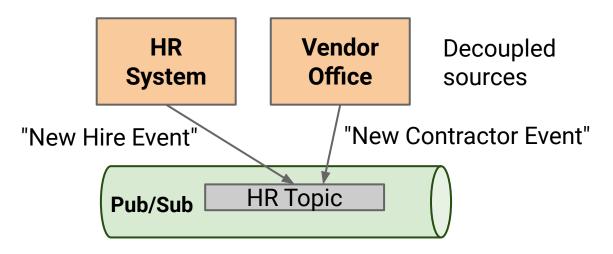
- At-least-once delivery
- Exactly-once processing
- No provisioning, auto-everything
- Open APIs

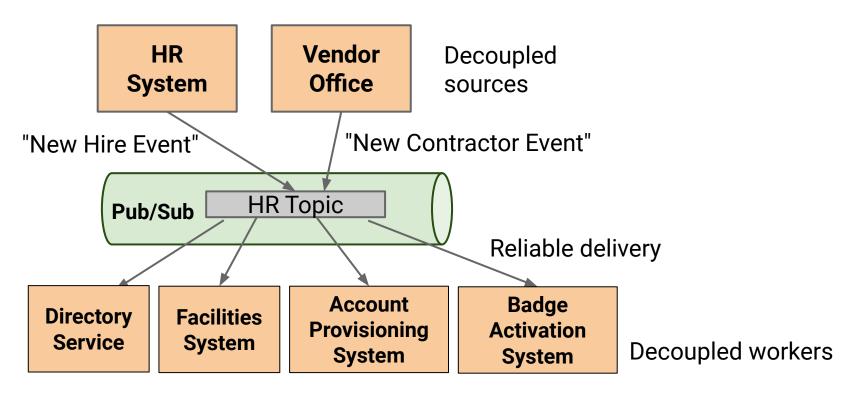


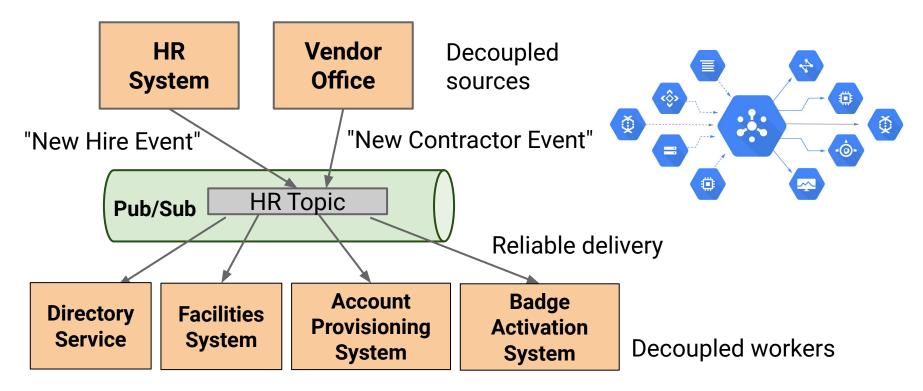
## Pub/Sub topics are like radio antennas











## **Cloud Dataflow**



Serverless, fully managed data processing

Unified batch and streaming processing + autoscale

Open source programming model using



Intelligently scales to millions of QPS



Data Engineers need to solve two distinct problems

Pipeline design

#### Implementation





Data Engineers need to solve two distinct problems

Pipeline design with Apache Beam



3

beam

Will my code work with both batch and streaming data? Does the SDK support the transformations I need to do? Are there existing solutions?

Yes
 .... Likely
 .... Choose from templates

#### Start with provided templates and build from there:

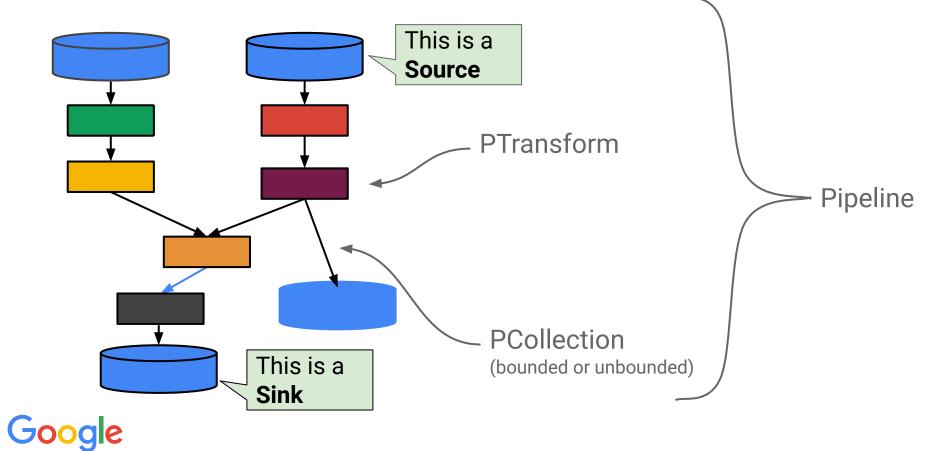
## github.com/GoogleCloudPlatform/DataflowTemplates

- BigQuery to Datastore
- Bigtable to GCS Avro
- Bulk Compressor
- Bulk Decompressor
- Datastore Bulk Delete \*
- Datastore to BigQuery
- Datastore to GCS Text \*
- Datastore to Pub/Sub \*
- Datastore Unique Schema Count

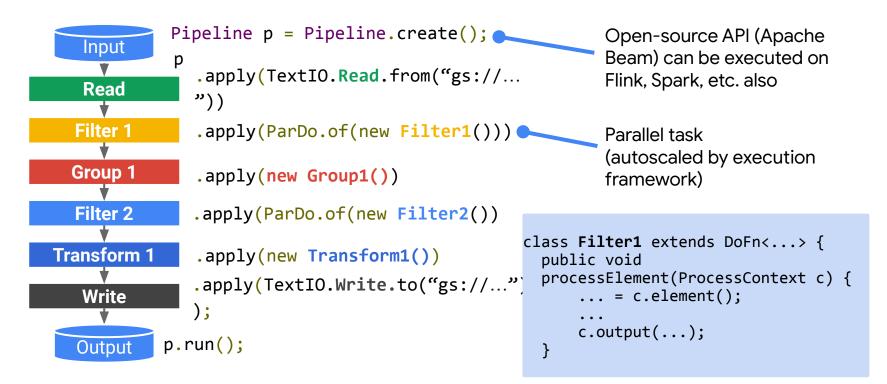
- GCS Avro to Bigtable
- GCS Avro to Spanner
- GCS Text to BigQuery \*
- GCS Text to Datastore
- GCS Text to Pub/Sub (Batch)
- GCS Text to Pub/Sub (Streaming)
- Jdbc to BigQuery

- Pub/Sub to BigQuery \*
- Pub/Sub to Datastore \*
- Pub/Sub to GCS Avro
- Pub/Sub to GCS Text
- Pub/Sub to Pub/Sub
- Spanner to GCS Avro
- Spanner to GCS Text
- Word Count

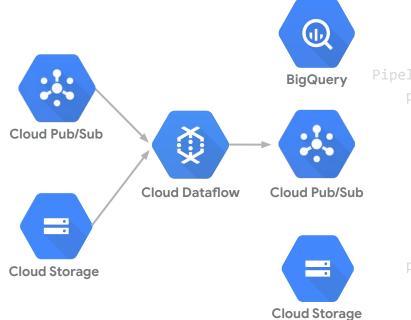
# What is a pipeline?



#### Dataflow offers NoOps data pipelines



#### Same code does real-time and batch



```
line p = Pipeline.create();
o.begin()
.apply(PubsubIO.Read.from("input_topic"))
.apply(SlidingWindows.of(60, MINUTES))
.apply(ParDo.of(new Filter1()))
.apply(ParDo.of(new Filter1()))
.apply(new Group1())
.apply(ParDo.of(new Filter2())
.apply(PubsubIO.Write.to("output_topic"));
o.run();
```

Data Engineers need to solve two distinct problems

### Implementation with Google Cloud Dataflow

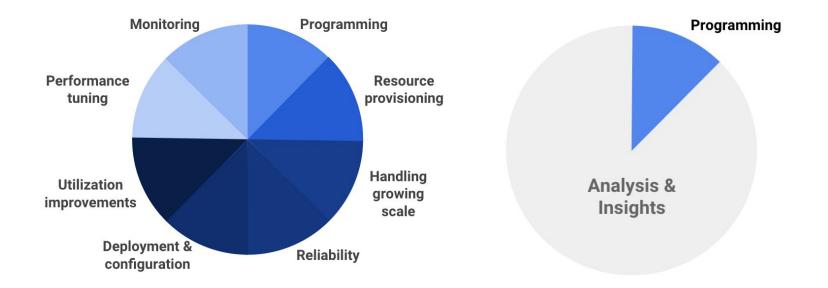




How much maintenance overhead is involved Is the infrastructure reliable? How is scaling handled? How can I monitor and alert? Am I locked in to a vendor?

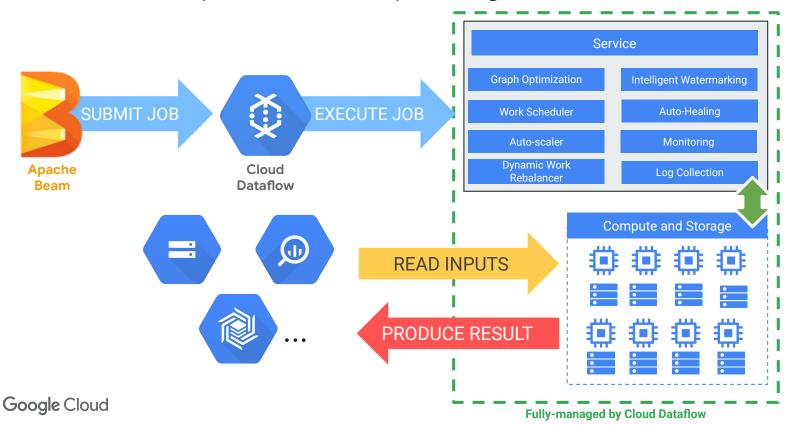
| ?k    |           | Little                         |
|-------|-----------|--------------------------------|
| • • • |           | Built on Google infrastructure |
|       | • • • • • | Autoscale workers              |
| • • • | • • • • • | Integrated with Stackdriver    |
| • • • | • • • • • | Run Apache Beam elsewhere      |

#### Why Serverless?





#### Example Dataflow fully-managed workflow

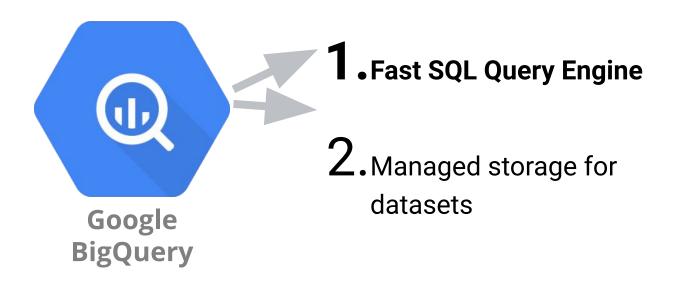


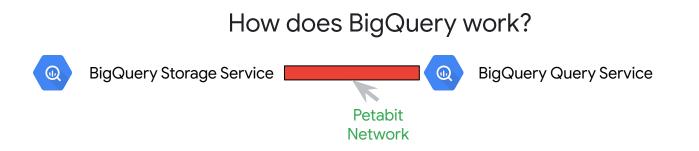
BigQuery is a petabyte-scale fully-managed data warehouse



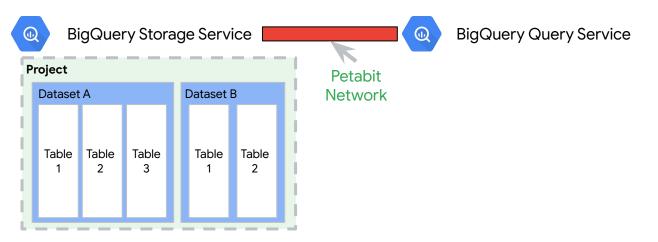
- 1. It's serverless
- 2. Flexible pricing model
- 3. Data encryption and security
- 4. Geospatial data types & functions
- 5. Foundation for BI and AI

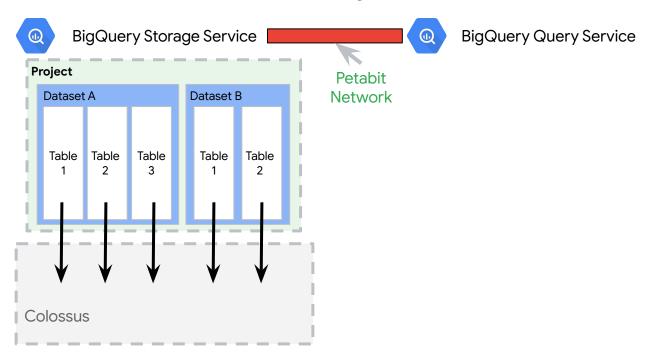
BigQuery is two services in one

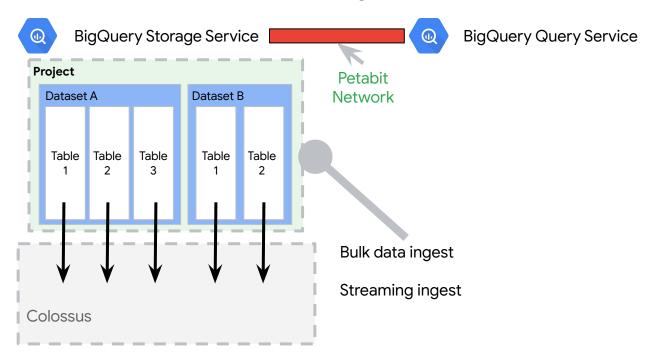




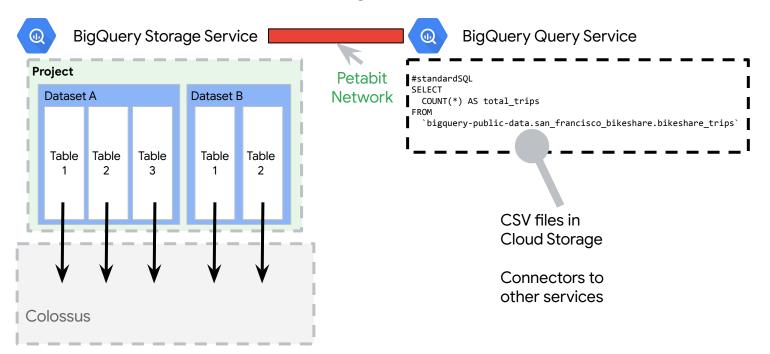
# How does BigQuery work? BigQuery Storage Service Project Petabit Network BigQuery Query Service











BigQuery supports standard SQL queries for analysis

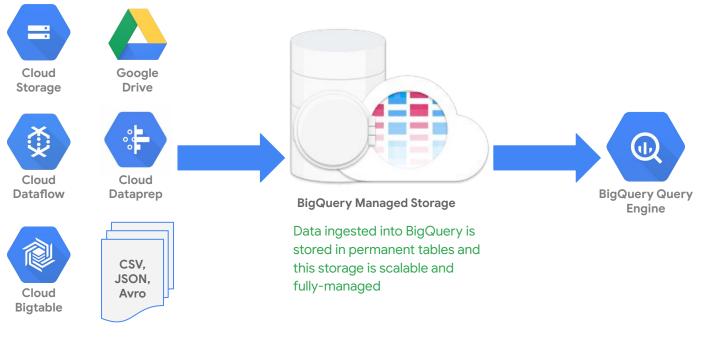
```
#standardSQL
SELECT
COUNT(*) AS total_trips
FROM
`bigquery-public-data.san_francisco_bikeshare.bikeshare_trips`
```

| Row | total_trips |
|-----|-------------|
| 1   | 1947419     |

BigQuery is two services in one



#### Use native BigQuery storage for the highest performance



... and more formats

#### BigQuery can query external (aka federated) data sources in GCS and Drive directly



#### Streaming records into BigQuery through the API



query data without waiting for a full batch load

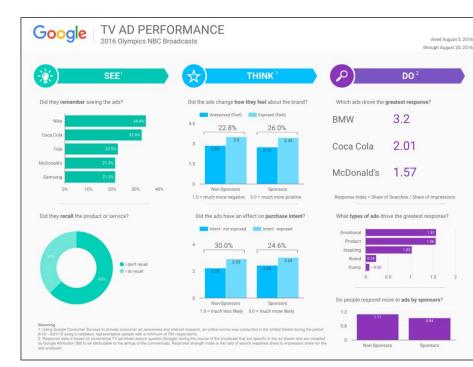
## Explore Data Studio insights right from within BigQuery

| Q  | uery editor                                                    |
|----|----------------------------------------------------------------|
| 1  | # which days did it rain in SF?                                |
| 2  | WITH rainy_sf AS (                                             |
| 3  | SELECT                                                         |
| 4  | wban,                                                          |
| 5  | stn,                                                           |
| 6  | rain_drizzle,                                                  |
| 7  | fog,                                                           |
| 8  | <pre>PARSE_DATE("%F",CONCAT(year,'-',mo,'-',da)) AS date</pre> |
| 9  |                                                                |
| 10 | WHERE wban = '93816'                                           |
| 11 | ORDER BY rain_drizzle DESC, date                               |
| 12 | )                                                              |
| 13 |                                                                |
|    | ▶ Run 🔻 📩 Save query 🕌 Save view 🕓 Schedule query マ            |
| Q  | uery results 📩 SAVE RESULTS 🔻 🕍 EXPLORE IN DATA STUDIO         |

Query complete (2.5 sec elapsed, 118.1 MB processed)

| Job information |            | Results JS |        | ON Execution d |     |
|-----------------|------------|------------|--------|----------------|-----|
| Row             | date       | total_t    | rips r | ain_drizzle    | fog |
| 1               | 2018-01-07 | 7 1        | 382    | 1              | 0   |
| 2               | 2018-01-08 | 3          | 805    | 1              | 0   |
| 3               | 2018-01-10 | ) 3        | 459    | 1              | 1   |

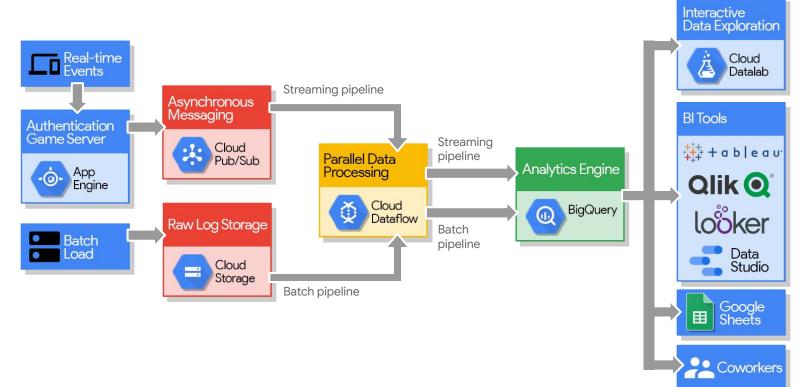
#### Build, collaborate, and share your dashboards



#### Tell a clear story with your data

# Share and collaborate on reports with others

#### Typical BigQuery data warehouse architecture





Break - 15 min

# Module 3 Deriving Insights using ML





**Cloud OnBoard** 

# Agenda

- Intro to Google Cloud Platform infrastructure
- Big data products:
  - Pub/Sub
  - Dataflow
  - BigQuery



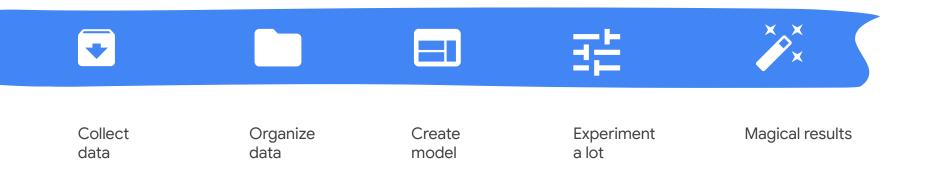


### The popular imagination of what ML is





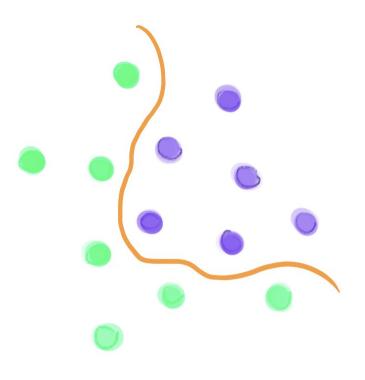
## In reality, ML is...





## What is machine learning?

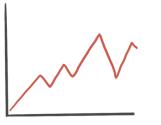
## Finding patterns in data



## Recommendation

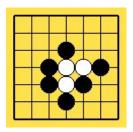




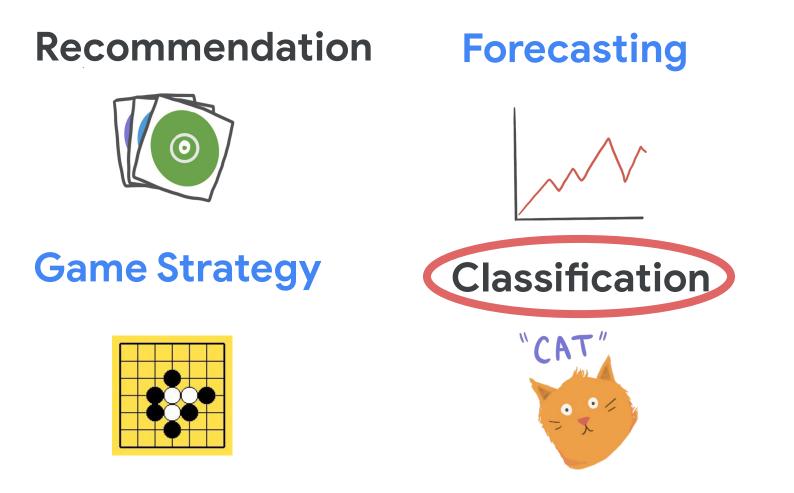


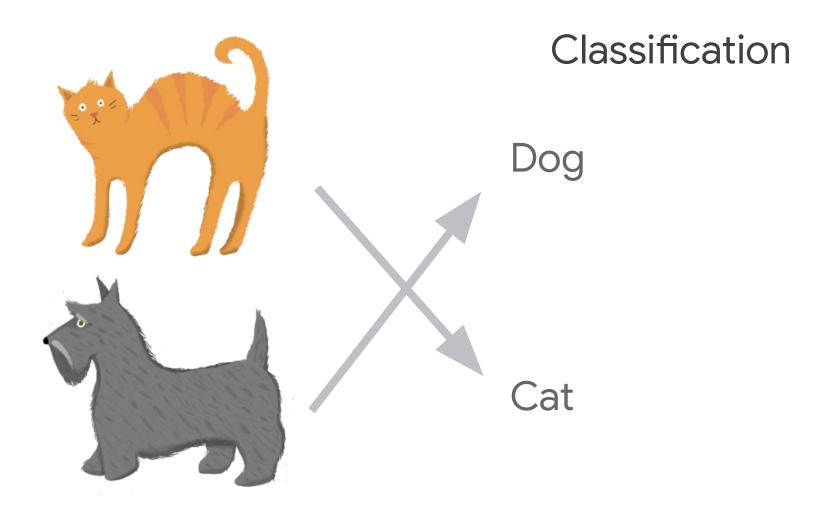
## **Game Strategy**

## Classification





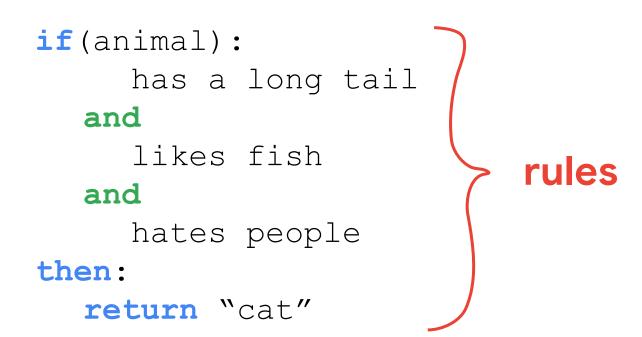




## **Traditional Programming:**

```
if(animal):
     has a long tail
  and
     likes fish
  and
     hates people
then:
  return "cat"
```

## **Traditional Programming:**



## **Machine Learning:**

Learn by examples, not rules

## Labeled Training Dataset

## Examples of cats









Examples of dogs

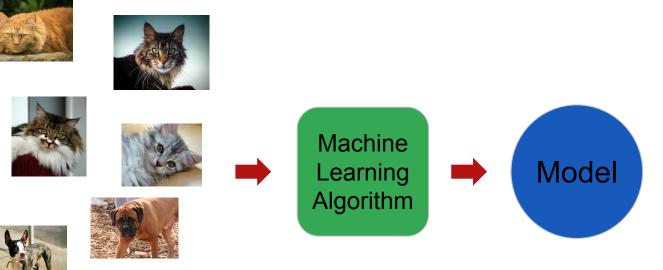








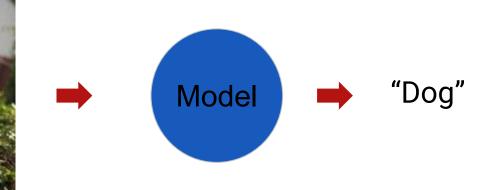
## Training a Model







## **Making Predictions**



# ML is great!

Ph.)





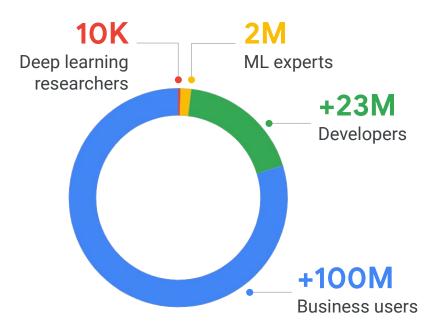
### Lots of pain



## Magical Al goodness

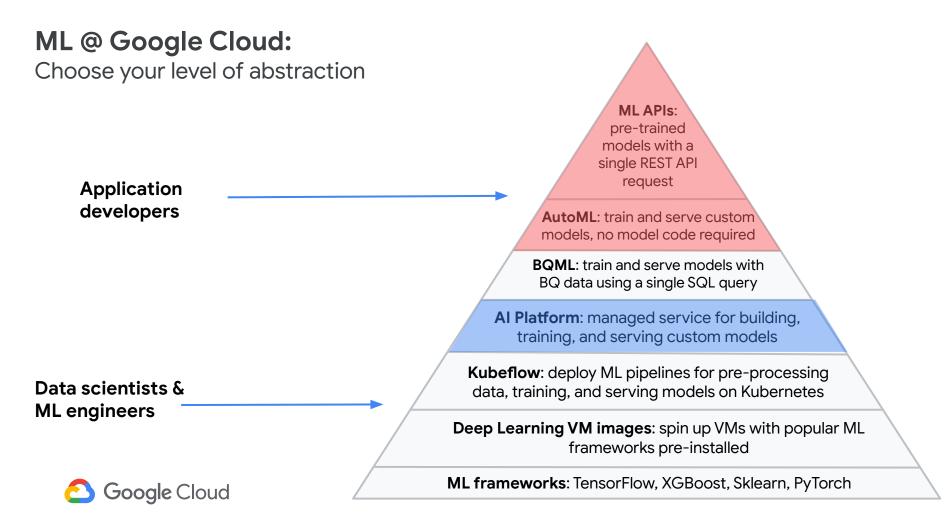
### If ML is a rocket engine, data is the fuel



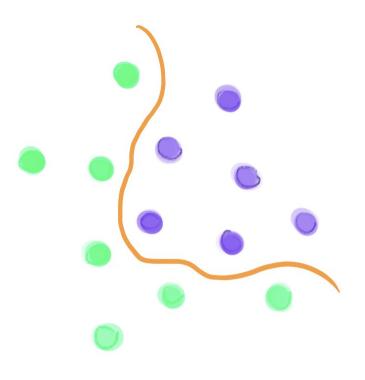




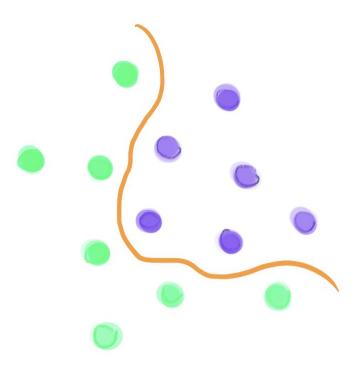
## **Democratising Machine Learning**



## Finding patterns in data



## Finding patterns in data \*requires data

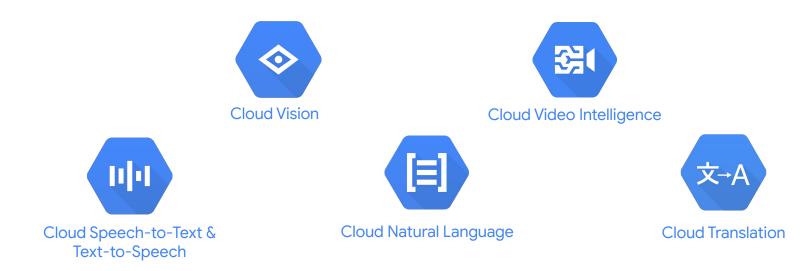


## No data?

No model :(

## Use Google's models

# Use a **pre-trained model** to accomplish common ML tasks





# **Cloud Vision API**

Faces Faces, facial landmarks, emotions



Logos Identify product logos



Image Properties Dominant colors Label Detect entities from furniture to transportation



Safe Search Detect explicit content - adult, violent, medical and spoof



Crop hints Detect salient image patches



OCR Support for > 50 languages, images, PDF, TIFF



Web Detection Leverage power of Google Search



Google Search I'm Feeling Locky

Object Localizer Retrieve object coordinates



Landmarks Detect landmarks using Google index



Product Search Identify products from your catalog



Handwriting OCR Extract handwritten text from your documents





#### labels

| Landmark           | 96% |
|--------------------|-----|
| Place Of Worship   | 83% |
| Architecture       | 79% |
| Temple             | 74% |
| Hindu Temple       | 74% |
| Temple             | 72% |
| Tourist Attraction | 71% |
| Building           | 68% |
| Amusement Park     | 64% |





#### emotion



## **Celebrity Recognition NEW**

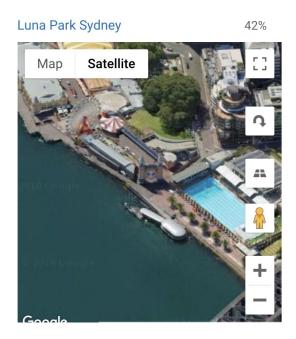




"BRAD PITT"



#### landmark detection





ocr

#### "LUNA PARK"



# Video Intelligence API



Track Objects Speech Transcription Explicit Content Detection ... and more













## Cloud Natural language api



Extract entities



Detect sentiment

Analyze syntax

anything are

1 was

ral have dents





Classify content



#### **Cloud Natural Language**

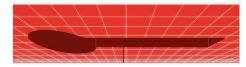
≡

PLAY THE CROSSWORD

TECH FIX

#### Protecting Your Internet Accounts Keeps Getting Easier. Here's How to Do It.

There are many tools for setting up twofactor authentication, a security mechanism that prevents improper access. These four methods are the most compelling.



GET UPDATES

#### NONFICTION

≡

The Two Artist Couples Who Helped Start American Modernism



GET UPDATES

#### **RESTAURANT REVIEW**

 $\equiv$ 

What Has New York Pizza Been Missing? Little Old Rhode Island





#### **Cloud Natural Language**

≡

PLAY THE CROSSWORD

#### TECH FIX

#### Protecting Your Internet Accounts Keeps Getting Easier. Here's How to Do It.

There are many tools for setting up twofactor authentication, a security mechanism that prevents improper access. These four methods are the most compelling.



GET UPDATES

#### NONFICTION

≡

The Two Artist Couples Who Helped Start American Modernism



GET UPDATES

#### RESTAURANT REVIEW

 $\equiv$ 

What Has New York Pizza Been Missing? Little Old Rhode Island



### entity extraction

| summit Tuesday by signing a do<br>eiterated his commitment to "co | Donald Trump and North Korea's Kim Jon<br>sument in which Trump pledged "security<br>nplete denuclearization of the Korean Per<br>sident pledged to handle a "very dangerou | guarantees" to the North and k<br>insula." The leaders also offer | Kim<br>red lofty | ANALYZE |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------|---------|
| ee supported languages                                            |                                                                                                                                                                             |                                                                   |                  |         |

 $(\text{SINGAPORE}_5 ((\text{AP})_6) - (\text{President}_1 (\text{Donaid Trump}_1 and (North Korea)_3 s (Kim Jong Un)_2 concluded an extraordinary nuclear (summit)_7 nuclear (summi$ 

1. Donald Trump Sentiment: Score 0 Magnitude 0.9 <u>Wikipedia Article</u> Salience: 0.26 PERSON

2. Kim Jong Un Sentiment: Score 0 Magnitude 1.3 Wikipedia Article Salience: 0.11 PERSON







# Cloud AutoML

Use your data to extend Google's pretrained models







Translation 🚺 Tables

Video



new

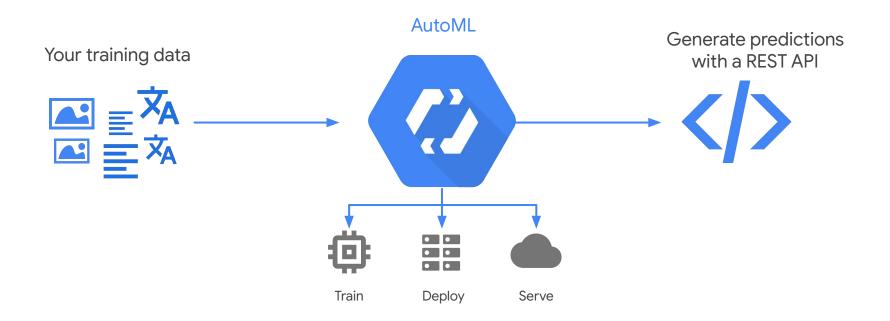




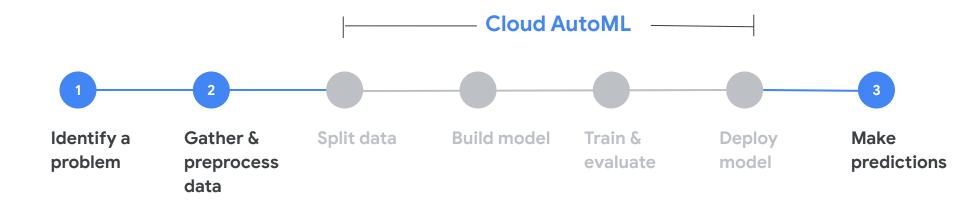


new Recommendations

### What is Cloud AutoML?

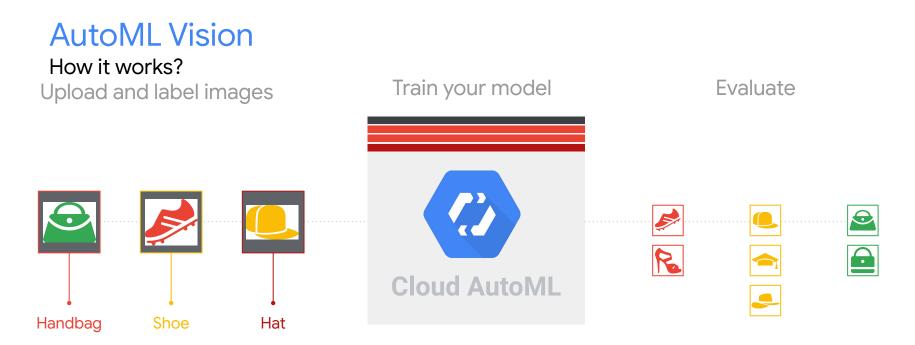


How can Cloud AutoML help?



### **AutoML Vision**





Model is now trained and ready to make prediction. This model can scale as needed to adapt to customer demands.

### Select the type of model

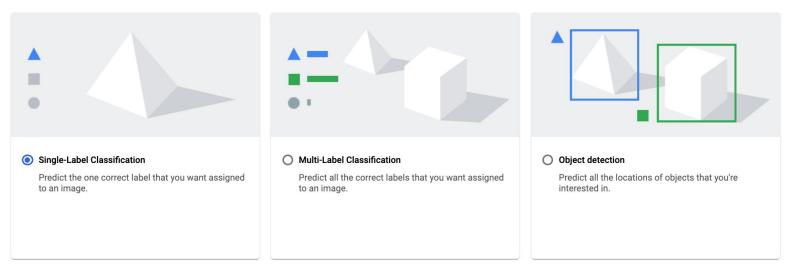
#### Create new dataset

#### Dataset name \*

untitled\_1579212004665

Use letters, numbers and underscores up to 32 characters.

#### Select your model objective



#### Import Images

| ← unti | untitled_15792120046 |       | II, LABEL | STATS | 1 EXPORT DATA |
|--------|----------------------|-------|-----------|-------|---------------|
| IMPORT | IMAGES               | TRAIN | EVALUATE  | TEST  | & USE         |

#### Select files to import

To build a custom model, you first need to import a set of images to train it. Each image should be categorized with a label. (Labels are essential for telling the model how to identify an image.)

- Each label should have at least 100 images for best results.
- O Upload images from your computer
- Select a CSV file on Cloud Storage

#### Select a CSV file on Cloud Storage

If you haven't already, upload your files to <u>Cloud storage</u> Z . The CSV file should be a list of GCS paths to your images. Images can be in JPG, PNG, GIF, BMP or ICO formats. Optionally, you can specify the TRAIN, VALIDATE, or TEST split.

Sample CSV format

[set,]image\_path[,label]
TRAIN,gs://My\_Bucket/sample1.jpg,cat
TEST,gs://My\_Bucket/sample2.jpg,dog

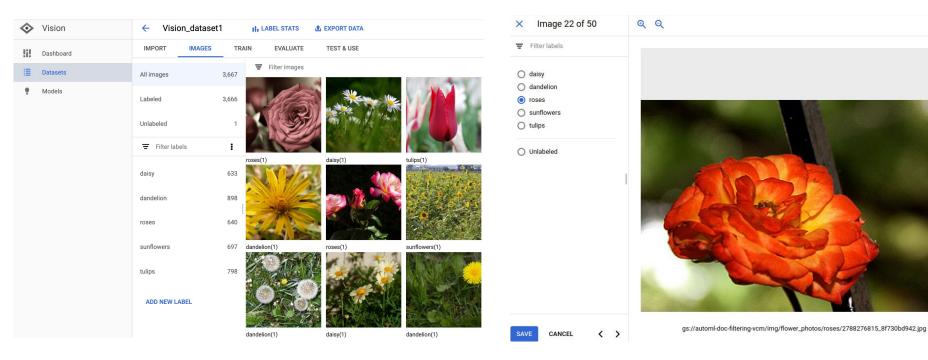
🔳 gs:// \*

BROWSE

### **Review dataset**

| Da | atasets                            | + NEW DAT | ASET                        |              |                |                           |                           |   |
|----|------------------------------------|-----------|-----------------------------|--------------|----------------|---------------------------|---------------------------|---|
|    | Name                               |           | Туре                        | Total images | Labeled images | Last updated              | Status                    |   |
| C  | untitled_1579212<br>ICN10374661866 |           | Single-Label Classification | 0            | 0              | Jan 16, 2020, 2:02:03 PM  | Running: Importing images | : |
| 0  | Vision_dataset1<br>ICN83367918309  | 913875968 | Single-Label Classification | 3,667        | 3,666          | Dec 12, 2019, 12:43:59 PM | Success: Training model   | : |
| 0  | Vision_dataset2<br>ICN64652647107  | 764724224 | Single-Label Classification | 3,667        | 3,666          | Dec 12, 2019, 12:40:49 PM | Success: Training model   | : |
| Ø  | Vision_dataset3<br>ICN84516336214  | 11823616  | Single-Label Classification | 3,667        | 3,666          | Dec 12, 2019, 12:40:39 PM | Success: Training model   | : |

#### **Review labels**

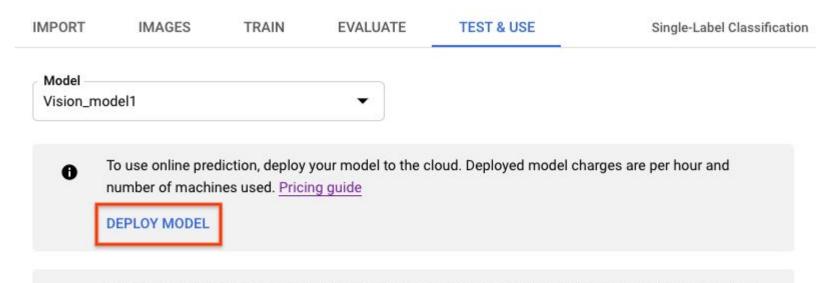


### Train model

| - Vision_dataset1   | III LABEL STATS         | 1 EXPORT DATA |                                              |                     |             |  |
|---------------------|-------------------------|---------------|----------------------------------------------|---------------------|-------------|--|
| IPORT IMAGES        | TRAIN EVALUATE          | TEST & USE    |                                              |                     | S           |  |
| Models TRAIN NEW    | N MODEL                 |               |                                              |                     |             |  |
| Vision_model5       |                         | :             | Vision_model4                                |                     | :           |  |
|                     | Average precision @     |               |                                              | Average precision @ |             |  |
|                     | 0,996                   |               |                                              | 0.995               |             |  |
|                     | Precision* 2            | 96.17%        |                                              | Precision* 🕢        | 96.99%      |  |
|                     | Recall*                 | 95.91%        |                                              | Recall*             | 96.46%      |  |
|                     | * Using a score thresho | old of 0.5    | * Using a score thres                        |                     | hold of 0.5 |  |
|                     |                         |               | 1000000                                      |                     |             |  |
| Model ID            | ICN3665591447098228     |               | Model ID 🕜                                   | ICN179012367727512  |             |  |
| Base model          | Feb 6, 2020, 12:21:32 P | vi            | Created Feb 6, 2020, 9:43:13 Base model None |                     | 1           |  |
| Data                | 3,666 images            |               | Data                                         | 3,666 images        |             |  |
| Model type          | Cloud                   |               | Model type                                   | Cloud               |             |  |
| Train cost          | 40 node hours           |               | Train cost                                   | 45 node hours       |             |  |
| Deployment state    | Not deployed            |               | Deployment state                             | Not deployed        |             |  |
| SEE FULL EVALUATION |                         |               | SEE FULL EVALUATION                          |                     |             |  |
| RESUME TRAINING     |                         |               | RESUME TRAINING                              |                     |             |  |

### **Deploy Model**

0



Notice for beta users: The v1beta1 API endpoint is scheduled for deletion after GA release. If your beta models have not been <u>redeployed since October 17, 2019</u> 2, please do so now to avoid interruption when the old service is shut down.

### More AutoML Vision features: Edge models

| Train new model                                                                                                                                                  |                                 |                                       |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------|--|--|--|--|--|--|--|
| Model name<br>leaf_types_v20190416180326                                                                                                                         |                                 |                                       |  |  |  |  |  |  |  |
| Model type                                                                                                                                                       |                                 |                                       |  |  |  |  |  |  |  |
| Cloud-hosted                                                                                                                                                     |                                 |                                       |  |  |  |  |  |  |  |
| Host your model on Google Cloud for online predictions.  Edge Download your model for offline/mobile use. Typically has lower accuracy than Cloud-hosted models. |                                 |                                       |  |  |  |  |  |  |  |
| Format model for Core ML (iC                                                                                                                                     | DS / macOS)                     |                                       |  |  |  |  |  |  |  |
| Optimize model for:                                                                                                                                              |                                 |                                       |  |  |  |  |  |  |  |
| Lowest latency                                                                                                                                                   | Best trade-off                  | Higher accuracy                       |  |  |  |  |  |  |  |
| Latency: 2 msec<br>Size: 858 KB                                                                                                                                  | Latency: 3 msec<br>Size: 3.7 MB | Latency: 5 msec<br>Size: 6.8 MB       |  |  |  |  |  |  |  |
| Accuracy: Typically lower                                                                                                                                        | Accuracy: Best trade-off        | Accuracy: Typically higher            |  |  |  |  |  |  |  |
| Show latency estimates for                                                                                                                                       |                                 |                                       |  |  |  |  |  |  |  |
| Edge TPU                                                                                                                                                         | ^                               |                                       |  |  |  |  |  |  |  |
| Google Pixel 1                                                                                                                                                   | idance only. Actu               | al latency will depend on your target |  |  |  |  |  |  |  |
| Samsung Galaxy S7                                                                                                                                                |                                 |                                       |  |  |  |  |  |  |  |
| iPhone 8 (iOS 11)                                                                                                                                                |                                 |                                       |  |  |  |  |  |  |  |
| Edge TPU                                                                                                                                                         | 0                               |                                       |  |  |  |  |  |  |  |

### AutoML for Pneumonia detection

Distinguishing if an x-ray has pneumonia in it is a task that even a human can struggle with. AutoML Vision Classification can train a model that is over 99% accurate for this task.





**5,863** high resolution images from public dataset on Kaggle with a mix of image formats and resolutions.

99+% Accuracy!

Beating almost all of the of the models on Kaggle





### Classification

## U.S. Congress bill topic categorization

Dataset source: congressionalbills.org/credits.html A bill to provide additional financial assistance for educational and biological programs pertaining to U.S. fisheries.

A bill to provide for a temporary increase in the public debt limit.

Agriculture

**Macroeconomics** 

### **Custom Sentiment**



@Alta I was stuck waiting on the tarmac for hours!



@JetGreen has so much legroom in coach!

### **Custom Sentiment**



@Alta I was stuck waiting on the tarmac for hours!

### Very Negative



@JetGreen has so much legroom in coach!

**Very Positive** 

### **Pretrained Entity Extraction**







Description

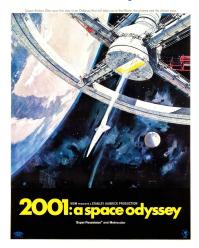
#### Context

These files contain metadata for all 45,000 movies listed in the Full MovieLens Dataset. The dataset consists of movies released on or before July 2017. Data points include cast, crew, plot keywords, budget, revenue, posters, release dates, languages, production companies, countries, TMDB vote counts and vote averages.

This dataset also has files containing 26 million ratings from 270,000 users for all 45,000 movies. Ratings are on a scale of 1-5 and have been obtained from the official GroupLens website.

### **Movie Genre Classification**

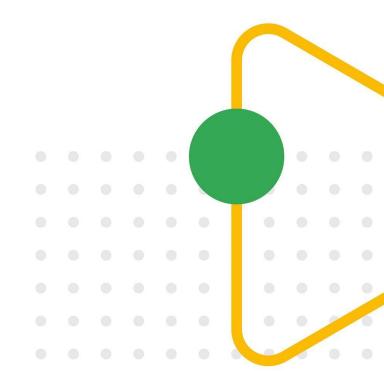
#### An epic drama of adventure and exploration



"After discovering a mysterious artifact buried beneath the lunar surface, mankind sets off on a quest to find its origins with help from intelligent supercomputer HAL 9000."



## AutoML Tables



### AutoML products announced so far



### **Missing structured data!**

### **AutoML Tables**

| Histo | Historic offers from marketplace.xyz |         |              |            |                 |           |        |     |             |
|-------|--------------------------------------|---------|--------------|------------|-----------------|-----------|--------|-----|-------------|
| ID    | Geo                                  | Domain  | Posted on:   | Title      | Description     | Category  | Brand  | ••• | Price sold: |
| 104   | US                                   | marketA | Feb 1, 2018  | "Dark red" | "Try this soft" | ["A, B,"] | Nike   | ••• | \$92        |
| 204   | US                                   | marketB | Jan 20, 2018 | "Women's"  | "Medium-size"   | ["A, B,"] | Adidas |     | \$58        |
| 302   | US                                   | marketA | Jan 12, 2018 | "Running"  | "All-terrain"   | ["A, B,"] | Asics  |     | \$85        |
| 352   | EU                                   | marketB | Feb 13, 2018 | "Running"  | "All-terrain"   | ["A, B,"] | Puma   | ]   | ?           |



### **AutoML Tables**

| Histo | Historic offers from marketplace.xyz |         |              |            |                 |           |        |     |             |
|-------|--------------------------------------|---------|--------------|------------|-----------------|-----------|--------|-----|-------------|
| ID    | Geo                                  | Domain  | Posted on:   | Title      | Description     | Category  | Brand  | ••• | Price sold: |
| 104   | US                                   | marketA | Feb 1, 2018  | "Dark red" | "Try this soft" | ["A, B,"] | Nike   |     | \$92        |
| 204   | US                                   | marketB | Jan 20, 2018 | "Women's"  | "Medium-size"   | ["A, B,"] | Adidas |     | \$58        |
| 302   | US                                   | marketA | Jan 12, 2018 | "Running"  | "All-terrain"   | ["A, B,"] | Asics  |     | \$85        |
| 352   | EU                                   | marketB | Feb 13, 2018 | "Running"  | "All-terrain"   | ["A, B,"] | Puma   | ]   | ?           |
| 352   | EU                                   | marketB | Feb 13, 2018 | "Running"  | "All-terrain"   | ["A, B,"] | Puma   | ]   | ?           |

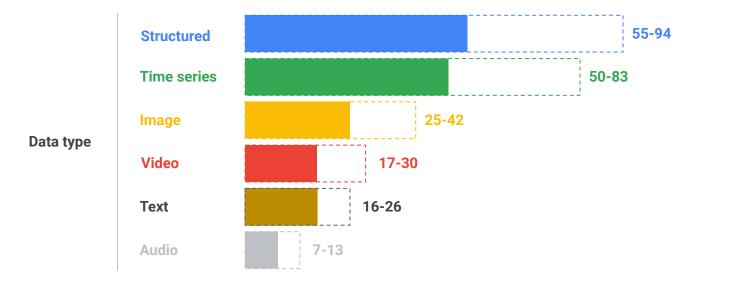
Target column



Structured data is likely to drive most of Al's impact

#### % of total value potential





Source: McKinsey Global Institute

#### Introducing AutoML Tables

Enable your entire team to automatically build and deploy state-of-the-art ML models on structured data at massively increased speed and scale.



## Automatically search through Google's whole model zoo...

Linear, logistic

Feedforward DNN

Wide and Deep NN

Gradient Boosted Decision Tree (GBDT)

DNN + GBDT Hybrid

Adanet ensemble

Neural + Tree Architecture Search

...and more!



| Sight | Language | Conversation | Struct Data |
|-------|----------|--------------|-------------|
|-------|----------|--------------|-------------|

| IMPORT SCHEMA ANALYZE TRAIN EVALUATE PREDICT |  |
|----------------------------------------------|--|
|----------------------------------------------|--|

### Import your data

AutoML Tables uses tabular data that you import to train a custom machine learning model. Your dataset must contain at least one input feature column and a target column. Optional columns can be added to configure parameters like the data split, weights, etc. <u>Preparing your</u> training data

### Table from BigQuery

The table must be in the US regional location

BigQuery project ID \*

BigQuery dataset ID \*

BigQuery table ID \*

### O CSV from Cloud Storage

Ø

The bucket containing the CSV must be in the us-central1 region. CSV formatting

■ gs:// BROWSE

IMPORT

Struct Data

| r sci                                                                      | HEMA                                                                 | ANALYZE               | TRAIN    | EVALUATE      | PREDICT       |          |               |
|----------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------|----------|---------------|---------------|----------|---------------|
|                                                                            |                                                                      |                       | C        | olumn name 👔  | Variable type | 0        | Nullability ? |
| t a target                                                                 |                                                                      |                       | A        | ge            | Numeric       | •        | Nullable      |
| column to be the target (what you want<br>del to predict) and add optional |                                                                      | J                     | ob       | Categorical   |               | Nullable |               |
| ers like weigh                                                             | it and time                                                          | columns               | N        | laritalStatus | Categorical   |          | Nullable      |
| olumn 🗿                                                                    |                                                                      | RESET                 | E        | ducation      | Categorical   |          | Nullable      |
|                                                                            |                                                                      | RESET                 | C        | efault        | Categorical   |          | Nullable      |
| it                                                                         |                                                                      | •                     | E        | alance        | Numeric       | •        | Nullable      |
|                                                                            |                                                                      |                       | H        | lousing       | Categorical   |          | Nullable      |
| rill build a clas                                                          | cted column is categorical data<br>ill build a classification model, |                       | L        | oan           | Categorical   |          | Nullable      |
| he target fron<br>Learn more                                               | n the classe                                                         | es in the selected    | C        | ontact        | Categorical   |          | Nullable      |
| al parameters                                                              | (Ontional)                                                           | $\checkmark$          | C        | ay            | Categorical   | •        | Nullable      |
| ai parameters                                                              | s (Optional)                                                         |                       | N        | Ionth         | Categorical   |          | Nullable      |
|                                                                            |                                                                      | our dataset schema to | C        | uration       | Numeric       | •        | Nullable      |
| re each column has the ap<br>nullability setting                           |                                                                      |                       | C        | ampaign       | Categorical   | •        | Nullable      |
| INUE                                                                       |                                                                      |                       | F        | Days          | Numeric       | •        | Nullable      |
|                                                                            |                                                                      |                       | F        | revious       | Numeric       | •        | Nullable      |
|                                                                            |                                                                      |                       | F        | Outcome       | Categorical   |          | Nullable      |
|                                                                            |                                                                      |                       | <b>v</b> | eposit Target | Categorical   | •        | Nullable      |

### Select

IMPORT

Select a co your mode parameter

Target col

### Deposit

The select Tables will predict the column. Le

### Additional

Before cor make sure type and n





| Sight | Language | Conversation | Struct Data |  |
|-------|----------|--------------|-------------|--|
|-------|----------|--------------|-------------|--|

### A Not up to date. Click the "Continue" button on the Schema tab to regenerate statistics.

| II features  | 17 | Filter instance | es          |           |                   |                           | 0 III     | Details                            |
|--------------|----|-----------------|-------------|-----------|-------------------|---------------------------|-----------|------------------------------------|
| in real area | 17 | Feature name 🛧  | Туре        | Missing ? | Distinct values 2 | Correlation with Target 💡 | Mean 😧    |                                    |
| lumeric      | 5  | Age             | Numeric     | 0%        | 77                | 0.065                     | 40.936    |                                    |
|              |    | Balance         | Numeric     | 0%        | 7,168             | 0.095                     | 1,362.272 | Distribution                       |
| ategorical   | 12 | Campaign        | Categorical | 0%        | 48                | 0.083                     |           | cellular (29285)                   |
|              |    | Contact         | Categorical | 0%        | 3                 | 0.144                     |           | unknown (13020)                    |
|              |    | Day             | Categorical | 0%        | 31                | 0.122                     |           | elephone (2906)                    |
|              |    | Default         | Categorical | 0%        | 2                 | 0.028                     |           |                                    |
|              |    | Deposit         | Categorical | 0%        | 2                 |                           |           | 28.8%                              |
|              |    | Duration        | Numeric     | 0%        | 1,573             | 0.333                     | 258.163   | 64.8%                              |
|              |    | Education       | Categorical | 0%        | 4                 | 0.071                     |           |                                    |
|              | 1  | Housing         | Categorical | 0%        | 2                 | 0.117                     |           |                                    |
|              | 1  | Job             | Categorical | 0%        | 12                | 0.134                     |           |                                    |
|              |    | Loan            | Categorical | 0%        | 2                 | 0.073                     |           |                                    |
|              |    | MaritalStatus   | Categorical | 0%        | 3                 | 0.059                     |           |                                    |
|              |    | Month           | Categorical | 0%        | 12                | 0.245                     |           | Top correlated features to Contact |
|              |    | PDays           | Numeric     | 0%        | 559               | 0.181                     | 40.198    | 100%                               |
|              |    | POutcome        | Categorical | 0%        | 4                 | 0.313                     |           |                                    |
|              |    | Previous        | Numeric     | 0%        | 41                | 0.181                     | 0.58      |                                    |
|              |    |                 |             |           |                   |                           |           |                                    |

### Train your model

Model name \* banking\_20190410095716

#### Training budget

Enter a number between 1 and 72 for the maximum number of node hours to spend training your model. If your model stops improving before then, AutoML Tables will stop training and you'll only be charged for the actual node hours used. Training pricing guide

| maximum node hours | 0                  |
|--------------------|--------------------|
|                    | maximum node hours |

#### Input feature selection

By default, all other columns in your dataset will be used as input features for training (excluding target, weight, and split columns).

#### 16 feature columns \*

| All columns selected | • |
|----------------------|---|
|----------------------|---|

#### Summary

Model type: Binary classification model Data split: Automatic Target: Deposit Blue Jeans Meeting Input features: 16 features Rows: 45,211 rows

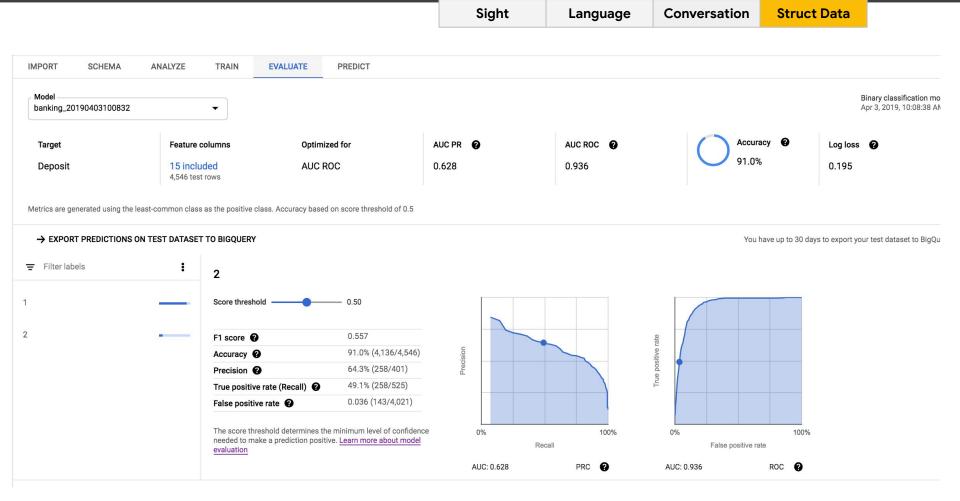


#### Optimization objective V

Depending on the outcome you're trying to achieve, you may want to train your model to optimize for a different objective. Learn more

TRAIN MODEL CANCEL

|                                                                           |                   |           | Sight          | Language                                                              | Conversation   | Struct Data |
|---------------------------------------------------------------------------|-------------------|-----------|----------------|-----------------------------------------------------------------------|----------------|-------------|
| MPORT SCHEMA A                                                            | ANALYZE TF        | EVALUAT   | PREDICT        |                                                                       |                |             |
| Models TRAIN MODE                                                         | EL                |           |                |                                                                       |                |             |
| Binary classification mode                                                | el                |           | Binary classif | ication model                                                         |                | :           |
| banking_2019040310                                                        | 0832              |           | banking_20     | 190313051647                                                          |                |             |
|                                                                           | AUC PR            |           |                | AUC PR                                                                | 2              |             |
| ~                                                                         | 0.628             |           | h              | 0.596                                                                 |                |             |
|                                                                           | 0.020             |           |                | 0.090                                                                 |                |             |
|                                                                           | AUC ROC 👔         | 0.936     |                | AUC ROC                                                               | 0.924          |             |
|                                                                           | Accuracy 2        | 90.98%    |                | Accuracy                                                              | 90.81%         |             |
|                                                                           | Log loss          | 0.195     |                | Log loss                                                              | 0.209          |             |
| Metrics are generated bas<br>positive class.<br>Accuracy is based on a so |                   |           | positive cla   | e generated based on the less<br>ass.<br>s based on a score threshold |                |             |
| Model ID                                                                  | TBL1263030997     | 058846720 | Model ID       | TBL253962                                                             | 25569557938176 |             |
| Created on                                                                | Apr 3, 2019, 10:0 | 08:38 AM  | Created or     | Mar 14, 20                                                            | 19, 3:06:46 PM |             |
| Target                                                                    | Deposit           |           | Target         | Deposit                                                               |                |             |
| Feature columns                                                           | 15 included       |           | Feature co     | lumns 16 included                                                     | Ł              |             |
| Test rows                                                                 | 4,546             |           | Test rows      | 4,546                                                                 |                |             |
| Optimization objective                                                    | AUC ROC           |           | Optimizati     | on objective AUC ROC                                                  |                |             |
| Status                                                                    | Deployed          |           | Status         | Deployed                                                              |                |             |
| SEE FULL EVALUATION                                                       |                   |           | SEE FULL       | EVALUATION                                                            |                |             |



Google Cloud

|           |            |                   |          |          | Sight   | Language | Conversation | Struct Da |
|-----------|------------|-------------------|----------|----------|---------|----------|--------------|-----------|
|           |            |                   |          |          |         |          |              |           |
| IMPORT    | SCHEMA     | ANALYZE           | TRAIN    | EVALUATE | PREDICT |          |              |           |
| BATCH PRE | DICTION    | ONLINE PREDICTION |          |          |         |          |              |           |
| Model     | 1904031008 | 22                | <b>•</b> |          |         |          |              |           |

Vour model was deployed and is available for online prediction requests. Your model size is 1,131.127 MB. Learn more

### Test and use your model

Online prediction deploys your model so you can send real-time REST requests to it. Online prediction is useful for time-sensitive predictions (for example, in response to an application request). Learn more

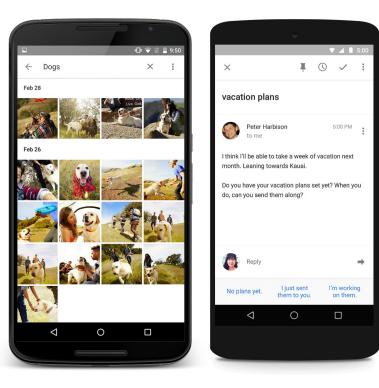
Online prediction pricing is based on the size of your model and the length of time your model is deployed. View pricing guide

| Predict label | Prediction result                                                 |
|---------------|-------------------------------------------------------------------|
| Deposit       | 1     Confidence score: 0.992       2     Confidence score: 0.008 |

| 5  | "values": [   |
|----|---------------|
| 6  | "technician", |
| 7  | "married",    |
| 8  | "secondary",  |
| 9  | "no",         |
| 10 | "52",         |
| 11 | "no",         |
| 12 | "no",         |
| 13 | "cellular",   |
| 14 | "12",         |
| 15 | "aug",        |
| 16 | "96",         |
| 17 | "?"           |

## When you hear "AI or ML," you probably think of:

Image models Sequence models Neural Networks



# The most common ML models at Google are those that operate on structured data

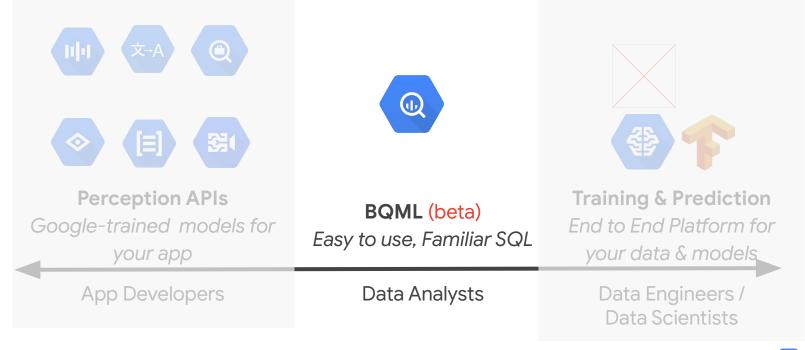
ML on structured data drives value

| Type of<br>network | # of network<br>layers | # of<br>weights | % of<br>deployed<br>models |
|--------------------|------------------------|-----------------|----------------------------|
| MLPO               | 5                      | 20M             | <b>L 1</b> 0/              |
| MLP1               | 4                      | 5M              | 61%                        |
| LSTMO              | 58                     | 52M             | 29%                        |
| LSTM1              | 56                     | 34M             | 27/0                       |
| CNNO               | 16                     | 8M              | 5%                         |
| CNN1               | 89                     | 100M            | 0 /0                       |

## It can take days to months to create an ML model



## BQML is a way to easily build machine learning models





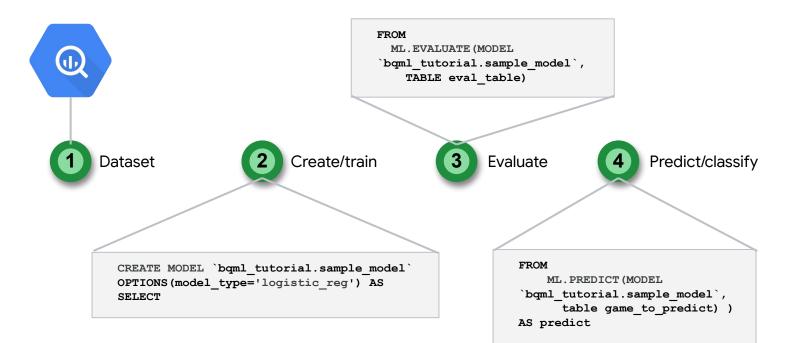


## Working with BigQuery ML





## Working with BigQuery ML







### Table info 🖌

| Table ID               | nyc-tlc:yellow.trips |
|------------------------|----------------------|
| Table size             | 129.72 GB            |
| Long-term storage size | 129.72 GB            |
| Number of rows         | 1,108,779,463        |

| pickup_datetime         | dropoff_datetime        | pickup_longitude   | pickup_latitude    | dropoff_longitude  | dropoff_latitude   | rate_code | passenger_count |
|-------------------------|-------------------------|--------------------|--------------------|--------------------|--------------------|-----------|-----------------|
| 2010-03-04 00:35:16 UTC | 2010-03-04 00:35:47 UTC | -74.035201         | 40.721548          | -74.035201         | 40.721548          | 1         | 1               |
| 2010-03-15 17:18:34 UTC | 2010-03-15 17:18:35 UTC | 0.0                | 0.0                | 0.0                | 0.0                | 1         | 1               |
| 2015-03-18 01:07:02 UTC | 2015-03-18 01:07:07 UTC | 0.0                | 0.0                | 0.0                | 0.0                | 1         | 5               |
| 2015-03-09 18:24:03 UTC | 2015-03-09 18:25:37 UTC | -73.93724822998047 | 40.758201599121094 | -73.93726348876953 | 40.7581901550293   | 1         | 1               |
| 2010-03-06 06:33:41 UTC | 2010-03-06 06:36:06 UTC | -73.785514         | 40.6454            | -73.784564         | 40.648681          | 1         | 2               |
| 2013-08-07 00:42:45 UTC | 2013-08-07 00:58:43 UTC | -74.025817         | 40.763044          | -74.046752         | 40.78324           | 5         | 1               |
| 2015-04-26 02:56:37 UTC | 2015-04-26 03:00:01 UTC | -73.98765563964844 | 40.77165603637695  | -73.98755645751953 | 40.771751403808594 | 1         | 1               |
| 2015-04-29 18:45:03 UTC | 2015-04-29 18:49:01 UTC | 0.0                | 0.0                | 0.0                | 0.0                | 1         | 1               |
| 2010-03-11 21:24:48 UTC | 2010-03-11 21:46:51 UTC | -74.571511         | 40.9108            | -74.628928         | 40.964321          | 1         | 1               |
| 2013-08-24 01:58:23 UTC | 2013-08-24 01:58:23 UTC | -73.972171         | 40.759439          | 0.0                | 0.0                | 5         | 4               |

**Google** Cloud

## Select data



Photo from Unsplash



SELECT
fare\_amount,
pickup\_longitude,
pickup\_latitude,
dropoff\_longitude,
dropoff\_latitude,
passenger\_count

FROM
 `nyc-tlc.yellow.trips`

# Build and train with CREATE MODEL



Photo from Unsplash



CREATE OR REPLACE MODEL mydataset.model\_linreg

```
OPTIONS(
    input_label_cols=['fare_amount'],
    model_type='linear_reg') AS
```

SELECT
fare\_amount,
pickup\_longitude,
pickup\_latitude,
dropoff\_longitude,
dropoff\_latitude,
passenger\_count

FROM
 `nyc-tlc.yellow.trips`

# Evaluate with **ML.EVALUATE**



Photo from Unsplash

SELECT
 \*
FROM
 ML.EVALUATE(
 MODEL mydataset.model\_linreg
 )



# Use the model with ML.PREDICT



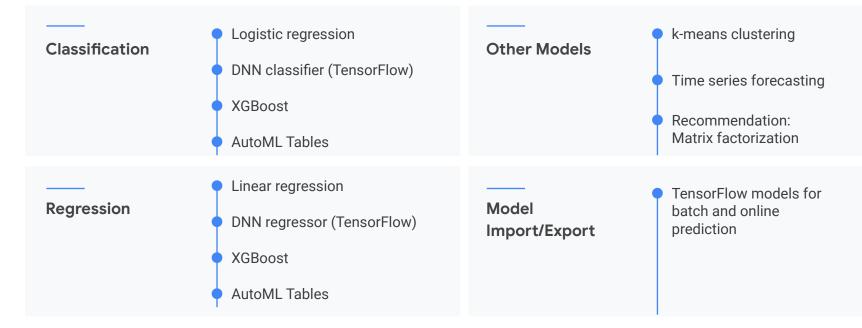
Photo from Unsplash

FROM ML.PREDICT(MODEL mydataset.model\_linreg, SELECT fare\_amount, pickup\_longitude, pickup\_latitude, dropoff\_longitude, dropoff\_latitude, passenger\_count FROM `nyc-tlc.yellow.trips` ))

SELECT



## Supported BigQuery ML models





## What about custom tasks?

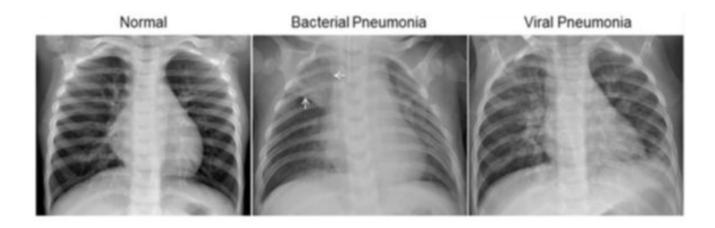
## **Generic Task**

## **Custom Task**





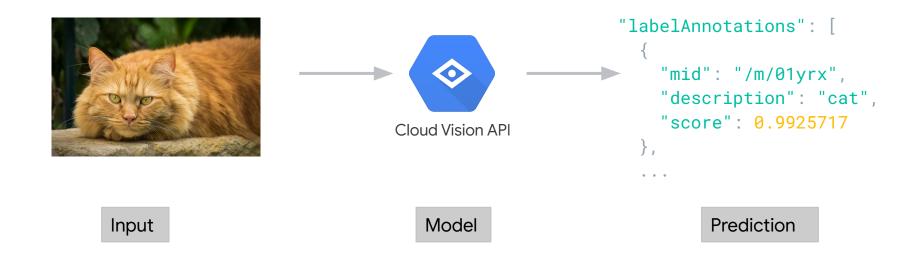




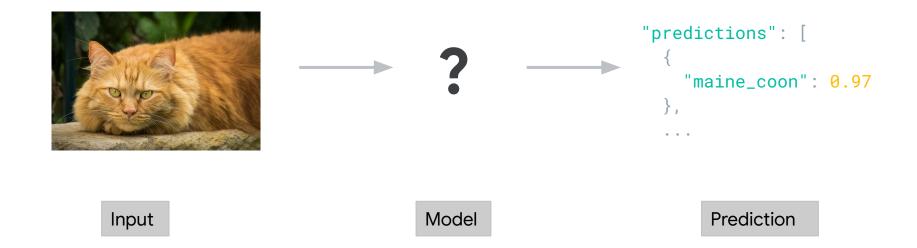
Healthy or Pneumonia?



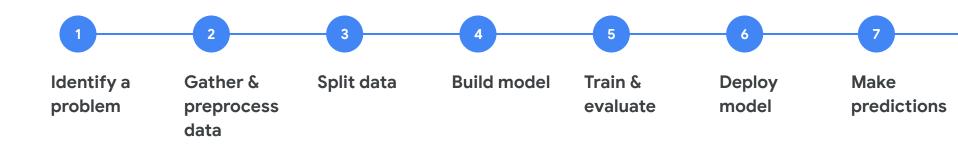
## Scenario 1: cat or not?



## Scenario 2: what breed is this cat?



# Scenario 2: building a cat breed prediction model

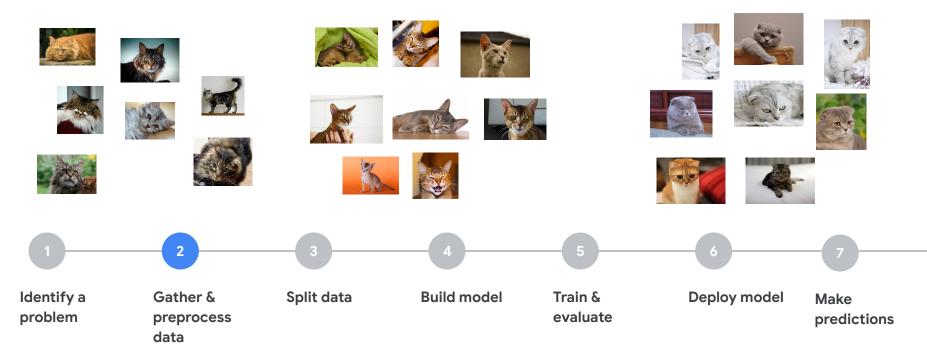


# Step 2: Gather & preprocess data

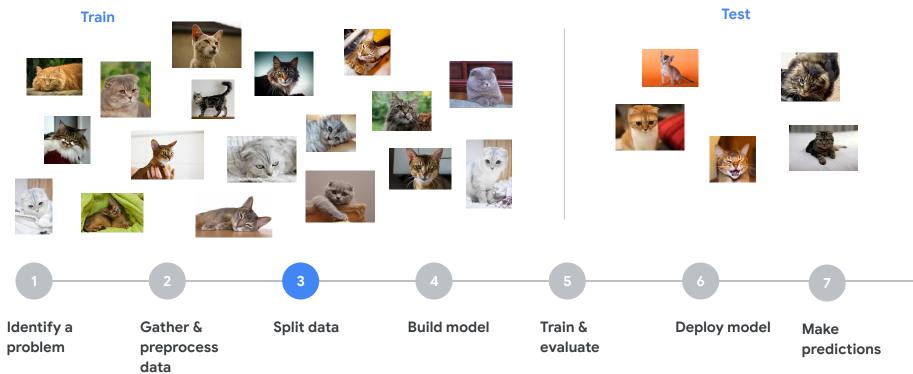
Maine Coon

Abyssinian

**Scottish Fold** 



# Step 3: Split data

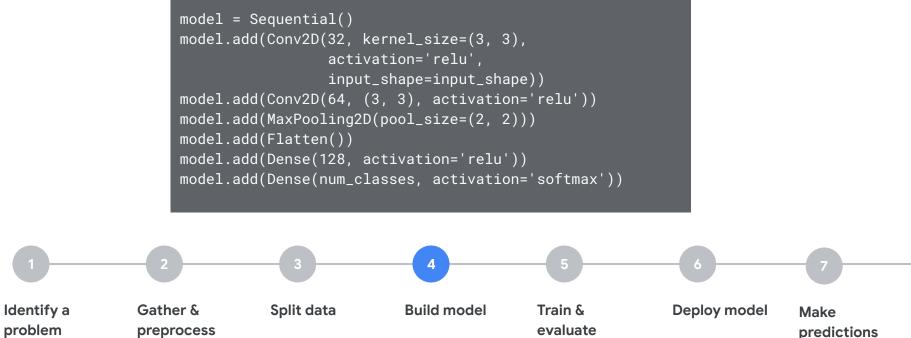


# Step 4: Build model

from tensorflow import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D

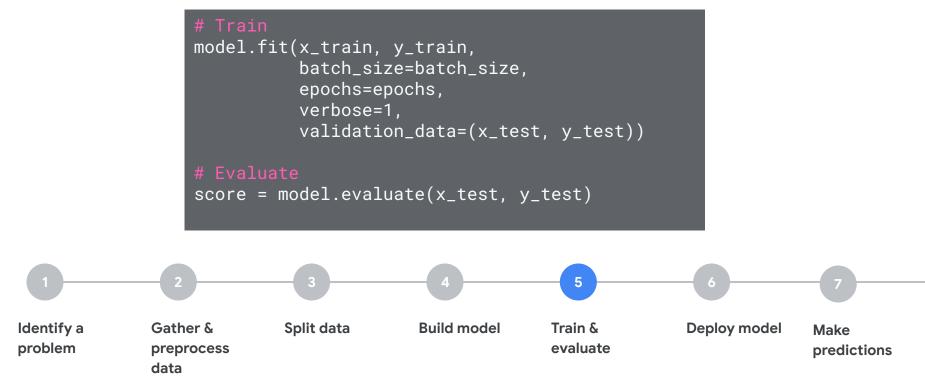


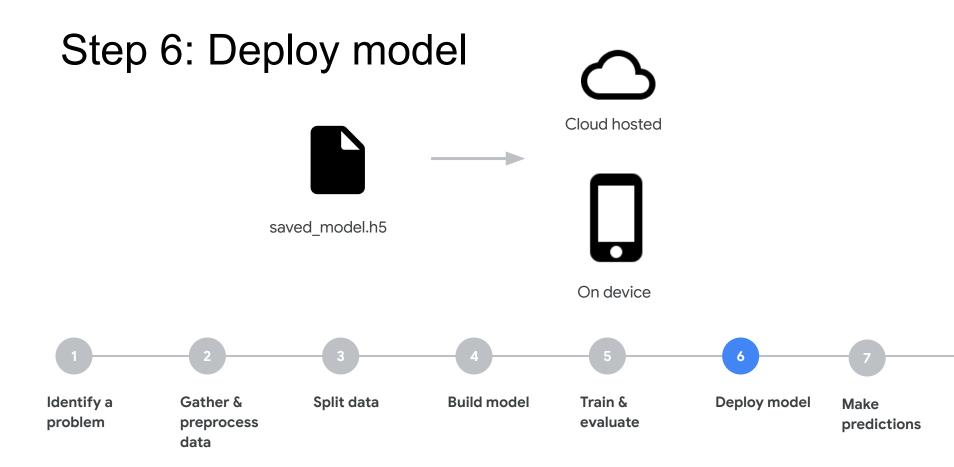
# Step 4: Build model



data

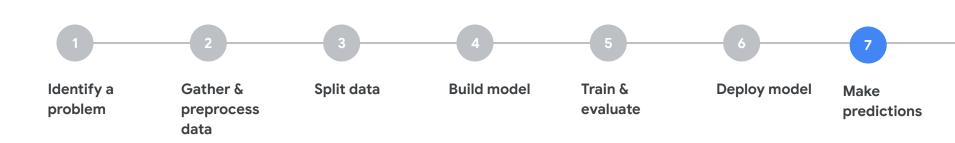
# Step 5: Train & evaluate





# Step 7: Make predictions





## New Google Training Portal for Nimbus

**Bookmark!** 





# Register for **Google Webinars** in the Nimbus Bootcamp



Google Cloud Fundamentals: Core Infrastructure

Oct 14 | 10:00-13:00



Google Cloud Fundamentals: Big Data & Machine Learning Oct 28 | 10:00-13:00



Fundamentals of Security in Google Cloud

Nov 4 | 10:00-13:00



Google Cloud Digital Leader (tech and non-tech)

Nov 18 | 10:00-13:00

## googlecloud.folloze.com/nimbus



# Thank you

Google Cloud