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A B S T R A C T   

Carbon capture and sequestration (CCS) is an important technology to reduce fossil CO2 emissions and remove 
CO2 from the atmosphere. Scenarios for CCS deployment consistent with global climate goals involve gigatonne- 
scale deployment of CCS within the next several decades. CCS technologies typically involve large water con-
sumption during their energy-intensive capture process. Despite potential concerns, the water footprint of large- 
scale CCS adoption consistent with stringent climate change mitigation has not yet been explored. This study 
presents the water footprints (m3 water per tonne CO2 captured) of four prominent CCS technologies: Post- 
combustion CCS, Pre-combustion CCS, Direct Air CCS, and Bioenergy with CCS. Depending on technology, the 
water footprint of CCS ranges from 0.74 to 575 m3 H2O/tonne CO2. Bioenergy with CCS is the technology that 
has the highest water footprint per tonne CO2 captured, largely due to the high water requirements associated 
with transpiration. The widespread deployment of CCS to meet the 1.5 ◦C climate target would almost double 
anthropogenic water footprint. Consequently, this would likely exacerbate and create green and blue water 
scarcity conditions in many regions worldwide. Climate mitigation scenarios with a diversified portfolio of CCS 
technologies have lower impacts on water resources than scenarios relying mainly on one of them. The water 
footprint assessment of CCS is a crucial factor in evaluating these technologies. Water-scarce regions should 
prioritize water-efficient CCS technologies in their mitigation goals. In conclusion, the most water-efficient way 
to stabilize the Earth’s climate is to rapidly decarbonize our energy systems and improve energy efficiency.   

1. Introduction 

Carbon capture and storage (CCS) is an important technology to 
reduce CO2 emissions from electricity and industrial sectors, as well as to 
remove CO2 from the atmosphere. Depending on the origin of CO2, there 
are different technologies to realize CCS. Emissions pathway scenarios 
for carbon capture technologies deployment consistent with global 
climate goals show that it will be required to remove an additional 
640–950 billion tonne of CO2 from the atmosphere by the end of the 
century in order to stabilize global temperatures at or below 1.5 ◦C 
above preindustrial temperatures [1,2]. By removing CO2 from the at-
mosphere and decarbonizing energy and industrial systems, CCS is one 
of the technologies that can play a key role in meeting climate change 
targets [3]. Since natural climate solutions are not large or fast enough 
to mitigate climate [4,5], CCS is receiving an increasing interest not only 
from the scientific community, but also from the international political 
community and the corporate world. For example, some major 

corporations are pledging to be carbon neutral and committing to 
sequester their historical CO2 emissions in the next few decades [6]. As 
CCS seems ever more necessary [7], technology developers and policy-
makers should ensure these approaches reliably sequester CO2 emissions 
and minimize unnecessary environmental impacts [8]. 

The twin challenges of managing climate change and water scarcity 
cannot be considered independently. For example, recent low carbon 
energy policies have had the unintended consequence of exacerbating 
tensions between food and energy systems with increased water re-
quirements for biofuels production [9], hydropower generation [10,11], 
and afforestation for carbon sequestration [12–15]. Water is also 
becoming an increasingly important issue for low-carbon electricity 
generation [16–20]. Therefore, water is starting to be considered a 
major factor that will constrain humanity’s ability to meet future soci-
etal needs while also managing climate change mitigation [21,22]. The 
expected adoption of CCS technologies [23,24] generates the need for 
more detailed information about their water footprints and how they 
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will interplay in the water-energy-food-climate nexus [25]. 
CCS systems are energy- and water-intensive technologies that, if 

adopted, will commit humanity to additional water use, further 
compelling attention to water scarcity [26]. CCS technologies use water 
during the cooling process at the power-plant level [27] and require 
additional water as an integral part to the carbon capture processes [28]. 
For example, it has been estimated that retrofitting a coal-fired power 
plant with post-combustion CCS would increase the power-plant water 
intensity by 55%, while decreasing the net plant efficiency by 45% [29]. 
Notably, bioenergy with CCS requires water during the carbon capture 
process at the power-plant level, but also additional water during 
biomass cultivation via evapotranspiration. Previous studies have 
assessed the water footprint of direct air CCS [30], bioenergy with CCS 
[8,31], and post-combustion CCS [26,28,29,32]. We, here, provide more 
comprehensive and detailed estimates of water footprints (Box 1) from a 
broad portfolio of carbon capture technologies, considering direct air 
CCS and bioenergy with CCS in addition to pre-combustion- and 
post-combustion- CCS technologies. 

A successful solution towards mitigating climate change will curtail 
CO2 emissions and minimize use of freshwater resources, especially in 
water-scarce regions. Despite the mounting concerns about global water 
scarcity, the water requirements of CCS technologies are often over-
looked. As we continue to evaluate the cost-effectiveness of different 
climate change mitigation technologies, the assessment of the water 
footprints of different CCS technologies can provide relevant insights to 
inform policy makers about the implication of alternative scenarios. 

This study gives a comprehensive overview of the water footprint 
(m3 of fresh water per tonne CO2 captured) of the four most prominent 
CCS technologies: (1) post-combustion CCS; (2) pre-combustion CCS; (3) 
Direct Air Capture Capture and Storage (DACCS); (4) Bioenergy with 
Carbon Capture and Sequestration (BECCS) (Box 2). Using future CCS 
adoption scenarios consistent with 1.5 and 2 ◦C climate targets [33], we 
estimate projected global water consumption associate with carbon di-
oxide removal by CCS throughout the 21st century. 

2. Methods 

The production of food, fiber, feed, and energy depends on the up-
take and consumption of soil moisture (or green water) supplied by 
rainfall and freshwater from surface water bodies and aquifers (or blue 
water) (Box 1). Here, we assess the total water consumption from CCS. 
While pre-combustion CCS, post-combustion CCS, and DACCS use solely 
blue water in their processes, BECCS uses green water to produce 
biomass feedstock and then blue water in the capture and sequestration 
of carbon dioxide at the power plant. In the following section, we 
describe how we calculated the water footprint of four CCS processes. 

2.1. Calculation of the water footprint of post-combustion and pre- 
combustion CCS 

We assessed blue water footprints of post-combustion- and pre- 
combustion- CCS using the Baseline Power Plant configuration of the 
Integrated Environmental Control Model (IECM Version 11.2) devel-
oped by Carnegie Mellon University for the U.S. Department of Energy’s 
National Energy Technology Laboratory (USDOE/NETL) [43]. The 
IECM Model is a well-documented publicly available engineering model 
that provides systematic estimates of water uses of coal fired- and nat-
ural gas fired-power plants with or without CCS systems. CCS processes 
are energy-intensive technologies [44] that would impose additional 
energy demands on existing power plants and thus require additional 
water for cooling processes. Water footprints vary depending on atmo-
spheric temperature, relative humidity, cooling technology, and power 
plant capacity [26]. We run the IECM Model generating an ensemble of 
water footprints considering a range of atmospheric temperatures (from 
0 ◦C to 30 ◦C), relative humidity (from 25% to 75%), power plant ca-
pacities (from 100 MW to 2500 MW), and cooling technologies (wet--
cooling, air-cooling, once-through, and hybrid cooling). We also run the 
IECM model considering four post-combustion CCS processes (amine 
absorption, pressure swing adsorption, pressure swing adsorption, and 
membrane separation) and two pre-combustion CCS processes (oxy-
combustion and integrated gasification combined cycle) (Box 2). 

2.2. Calculation of the water footprint of DACCS 

Water loss in DACCS processes come from the sorbent-air contacting 
process [24]. The blue water footprint of DACCS varies in function of 
temperature, relative humidity, and sorbent molarity [30]. The water 
footprint was assessed using the definitions and assumptions of Socolow 
et al., 2011 [45] (Page 40) and considering a range of temperatures 
(from 0 ◦C to 30 ◦C), relative humidity (from 25% to 75%), and two 
sorbent molarities (5 M and 10 M). 

2.3. Calculation of the water footprint of BECCS 

The water footprint of BECCS was assessed considering the water 
required to produce the biomass feedstock (or green water) and the 
water use in the carbon dioxide capture process (or blue water). To es-
timate the water required to produce biomass feedstock, we compiled an 
inventory of water use efficiencies (gH2O per gCO2) of different dedi-
cated feedstock from existing studies (Table 1; Supplementary Table). 
Water use efficiency is a measure of the amount of water required by a 
biomass feedstock to sequester a certain amount of carbon dioxide [46, 
47]. Water use efficiency is dependent on climate, phenology, latitude, 

Box 1Concepts and definitions about water systems.  
WATER CONSUMPTION is the volume of net water extracted. This water is evapotranspired and becomes unavailable for short-term reuse within the same watershed. 
WATER WITHDRAWAL is the gross volume of water abstracted from a water body. This water is partly consumed and partly returned to the source or other water bodies, where it is 

available for future uses. 
WATER FOOTPRINT is the volume of fresh water consumed to produce goods or services during their life cycle [34,35]. Based on the source of the water, the water footprint can be 

divided in green and blue water footprint. 
GREEN WATER Root-zone soil moisture that is available for uptake by plants. Biomass plantations use green water during the photosynthesis process. 
BLUE WATER Freshwater in surface and groundwater bodies available for human use. All CCS technologies use blue water during the CO2 capture process at the power-plant level. 
GREEN WATER FOOTPRINT refers to water from the unsaturated root zone of the soil profile that is used by plants and soil microorganisms. It is relevant for the assessment of the 

water footprint of BECCS because of the evapotranspiration of water by biomass feedstock. 
BLUE WATER FOOTPRINT refers to water from surface and groundwater bodies, it is relevant for the assessment of the water footprint of DACCS, and pre- and post-combustion CCS 

because of the evaporation of water at the power plant level during the capture and sequestration process.   
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available water [48–51]. Blue water used to capture CO2 in the com-
bustion process of biomass was assessed using the IECM Model and 
considering the water footprint of integrated gasification combined 
cycle. 

We consider two technology cases for BECCS: an efficient carbon 
supply chain, and an inefficient supply chain. Estimates of carbon 
sequestration efficiency were first estimated by Smith and Torn in 2013 
[52] (Fig. 1a). Smith and Torn model an indirectly heated biomass in-
tegrated gasification combined cycle-CCS facility with relatively little 
heat integration [53], and assume very high losses of CO2 during 
transport and injection [54]. In total, Smith and Torn estimate that 47% 
of carbon in the biomass feedstock is captured and sequestered in the 
integrated gasification combined cycle and CCS process [52]. 

We expect commercial applications of BECCS for power generation 
to achieve higher carbon sequestration efficiencies. In our efficient 
scenario, we model a carbon-efficient integrated gasification combined 
cycle facility with 90% CO2 capture [57], and adjust losses during 
transport and injection to 1.8%. Baling losses were assumed to be 4% 
[56]. This figure is the low-range estimate of Brandt et al., 2014 [55], a 
comprehensive review of methane (CH4) leakage rates. Large-scale CO2 
transportation and injection may incur similar losses to existing CH4 
systems. In total, we estimate a carbon sequestration efficiency of 81%. 
Both scenarios are shown in Fig. 1. 

While the water footprint of pre-combustion CCS, post-combustion 
CCS, and DACCS is solely from blue water, the water footprint of 
BECCS is from both green water and blue water. Feedstock biomass 
growth uses both green water and in many cases blue water supplied by 
irrigation [31]; blue water is also used in the capture and sequestration 
process during the integrated gasification combined cycle. Here we as-
sume that feedstock biomass is solely rain-fed and therefore only green 
water is used in the production of biomass. 

2.4. Calculation of projected water consumption 

We assessed projected water consumption from CO2 sequestration in 
the 21st century multiplying technology-specific CO2 sequestration from 
CCS processes (tonne CO2) times their water footprints (m3 per tonne 
CO2). Carbon dioxide removal scenarios were taken from Realmonte 
et al., 2019 [33] and assessed using two well-established integrated 
assessment models – WITCH [83] and TIAM-Grantham [84]. With in-
tegrated assessment models, it is possible to evaluate the role of different 
carbon removal technologies in 1.5 and 2 ◦C mitigation scenarios 
through a least-cost optimization, under a range of techno-economic 
assumptions (technology costs, energy requirements, and technical 
learning and growth rates). These scenarios were obtained imposing a 
carbon budget over the 2016–2100 period equal to 810 and 220 billion 
tonne CO2, consistent with 1.5 ◦C and 2 ◦C warming respectively [85]. 
We chose the study of Realmonte et al., 2019 [33] for its detailed rep-
resentation of a broad portfolio of carbon capture technologies, 
considering also DACCS and BECCS in addition to traditional CCS pro-
cesses. Moreover, the inter-model study design ensures that our results 
are robust across model uncertainties, as the integrated assessment 
models adopted have complementary characteristics. 

3. Results 

3.1. Water footprint of low carbon electricity generation 

Water use is becoming an increasingly important issue for low- 
carbon electricity generation [86]. Given the committed trillion-dollar 
investments in existing fossil fueled energy and industrial infrastruc-
ture [87], post-combustion CCS is the preferred economically viable 
technology to curtail CO2 emissions because it can potentially be added 
to existing energy and industrial infrastructure without having to 
decommission them [88,89]. Using the IECM model, we estimate that a 
coal-fired power plant retrofitted with post-combustion CCS has a water 

Box 2Concepts and definitions about carbon capture and storage technologies.  
CARBON CAPTURE  

AND STORAGE (CCS) is the process of trapping carbon dioxide (CO2) produced by anthropogenic activities and storing it in such a way that it is unable to affect the atmosphere [41, 
42]. CCS is a critical technology for climate change mitigation, but most of these technologies are commercially immature [3]. CCS technologies typically involve large water 
consumption during their energy-intensive capture process. 
CARBON SEQUESTRATION EFFICIENCY is the fraction of carbon in the biomass feedstock that is captured and sequestered through a CCS supply chain (Fig. 1) 

TECHNOLOGY TECHNOLOGY READINESS LEVEL [ref. 24] (from 1 to 9; low to high maturity level) 
DIRECT AIR CAPTURE AND STORAGE (DACCS) capture and  

permanent sequestration  
of CO2 directly from the atmosphere [30,36]. Proposed processes entail using solid or 
liquid sorbents to capture CO2. DACCS uses blue  
water during the energy-intensive capture  
process. 

8. Small-scale of direct air capture technologies have found niche markets for greenhouses 
and synthetic fuels [37]. 
7. Large-scale solid sorbent technologies have been built at demonstration-scale in 
Squamish, BC, Canada. Only one DACCS project exists, in Iceland [38]. 

BIOENERGY WITH CARBON CAPTURE AND STORAGE (BECCS) capture and 
permanent sequestration of biogenic CO2  

during energy conversion from biomass [39], including post-combustion and 
pre-combustion technologies. BECCS uses blue water during  
the energy-intensive capture process, and green water during biomass feedstock 
cultivation. 

9. CCS from corn ethanol production has been practiced at commercial scale, both for 
enhanced oil recovery, and permanent geologic storage [39]. 
6-7. Several plants are under development to produce transportation fuels from 
lignocellulosic biomass in or near California, United States [40]. 

POST-COMBUSTION CARBON CAPTURE  
AND STORAGE capture and permanent sequestration of CO2 after the combustion  
process has taken place [41,42]. This process  
uses blue water during the energy-intensive capture process. 

8. Post-combustion capture and sequestration is practiced at commercial scale at 
Boundary Dam Power Station in Saskatchewan, Canada. It is not yet in widespread 
commercial use. 

PRE-COMBUSTION CARBON CAPTURE AND STORAGE there are two different 
processes: Integrated gasification combined  
cycle is a process that converts coal and  
biomass into syngas, capturing and sequestering CO2 before the combustion process 
has taken place. Oxycombustion is the process of burning coal and biomass in pure 
oxygen, capturing and sequestering a pure stream of CO2 after the combustion process 
has taken place [41,42].  
These processes use blue water during the energy-intensive capture process. 

7. Electricity generation via integrated gasification combined cycle with CCS was 
attempted, but ultimately abandoned, at the Kemper County energy facility in Mississippi, 
United States.   
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footprint of 1.71 [0.50; 2.33] m3/tonne CO2 (median [low percentile; 
upper percentile] across the ensemble) (Fig. 2). Receiving increasing 
attention is also the opportunity to retrofit natural gas power plants with 
post-combustion CCS [90]. We estimate that a natural gas combined 
cycle power plant retrofitted with post-combustion CCS has a water 
footprint of 2.59 [2.37; 3.16] m3/tonne CO2. 

Fig. 3 shows technology-specific water intensities of different post- 
combustion CCS technologies. We find that water intensity strongly 
varies with cooling technology and CCS technology (Fig. 3). Once- 
through is the cooling technology with the highest water withdrawal 
intensity, while wet cooling is the technology with highest water con-
sumption intensity. Amine absorption and temperature swing adsorp-
tion are the CCS technologies with the highest water intensity. Pressure 
swing adsorption and membranes systems are the least water intensive 
CCS technologies. 

Pre-combustion CCS is another promising technology to decarbonize 
energy and industrial systems (Box 2). We considered two pre- 
combustion CCS processes: Oxy-combustion and integrated gasifica-
tion combined cycle. We find that oxy-combustion has a similar water 
footprint to post-combustion CCS, equal to 2.22 [1.93; 2.69] m3/tonne 
CO2. But integrated gasification combined cycle has a smaller one, equal 
to 0.74 [0.65; 0.80] m3/tonne CO2 (Fig. 2). 

3.2. Water footprint of carbon dioxide removal 

Preventing global temperature from rising more than 1.5 ◦C is likely 
to require the removal of CO2 from the atmosphere with negative 
emission technologies such as BECCS and DACCS [91,92]. BECCS is the 
CCS technology with the highest water footprint. Under a low efficiency 
configuration (Fig. 1a), BECCS has a water footprint equal to 575 [382; 
766] m3/tonne CO2 captured, while under a high efficiency configura-
tion (Fig. 1b), it has a lower water footprint equal to 333 [221; 444] 
m3/tonne CO2 captured (Fig. 3). The water footprint of BECCS is mainly 
from green water to grow biomass feedstock. Fig. 4 shows the water 
footprint of BECCS considering different dedicated biomass feedstock. 
The water footprints show large variations depending on feedstock type 
and phenology. Producing bioenergy and capturing CO2 from euca-
lyptus plantations has the highest water footprint (Fig. 4), while mis-
canthus and willow are the biomass feedstock with the lowest water 
footprint. In addition to BECCS, DACCS is emerging as a potentially 
important process to remove CO2 from the atmosphere [34]. Despite 
DACCS is currently more expensive than BECCS, we find that DACCS is 
the most water-efficient way to remove CO2 directly from the atmo-
sphere, with a blue water footprint of 4.01 [2.00; 6.83] m3/tonne CO2. 

3.3. Projected water use to meet climate targets 

In order to assess the water consumption that would result from the 
adoption of CCS to meet 1.5 ◦C and 2 ◦C climate change targets in the 
21st century, we multiplied the projected amount of CO2 sequestered by 
different technologies [33] by the water footprint values specific to each 
CCS process. Under a more conservative 2 ◦C climate change scenario, 

CCS would have a water footprint of 3900–5850 km3 to sequester 15–47 
billion tonne CO2 yr− 1 in year 2100 (Fig. 5). We also find that meeting 
1.5 ◦C mitigation targets will require substantially more water than the 
2 ◦C climate scenario, with an estimated 5085–8564 km3 of water 
necessary to sequester 21–47 billion tonne CO2 yr− 1 in year 2100. The 
1.5 ◦C climate scenario will require more water because more CO2 will 
need to be sequestered from the atmosphere along the century to limit 
warming. In all the scenarios, more than 97% of global water con-
sumption will come from BECCS and therefore would mainly be from 
green water. Indeed, Fig. 5 shows that the scenarios with multiple 
adoption of CCS technologies exhibit lower water consumption, while 
BECCS intensive scenarios require more water than the others do. 

While our results show that large volumes of water will be required, 
future technological development could lower the water footprint of 
CCS processes. For example, to assess the water footprint of BECCS we 
considered a carbon conversion efficiency – the amount carbon from the 
harvested dedicated feedstock can be removed from the carbon cycle 
and sequestered – equal to 47% [52] (Fig. 1). In case the carbon con-
version efficiency of BECCS increased to 81% (Fig. 1), the water foot-
print of BECCS would decrease from 575 m3/tonne CO2 to 333 m3/tonne 
CO2. This in turn would reduce global CCS water consumption from 
5085–8564 km3 to 3000–4900 km3 under a 1.5 ◦C climate scenario by 
2100. 

4. Discussion 

4.1. Trade-offs between water resources and climate mitigation 

Building on previous efforts that assessed the water footprint of 
anthropogenic activities [9,93], this study quantifies the water footprint 
of four prominent CCS technologies in the context of stringent climate 
change mitigation. The need to decarbonize the global economy has led 
to an increasing interest in CCS as a climate mitigation strategy from a 
policy-making perspective [8,23,94,95]. At the same time, concerns 
have been arisen about their sustainability and the impacts on water and 
land use, energy needs and ecosystems [8]. In particular, the adoption of 
CCS technologies will likely increase demand for water. We analyze the 
water footprint of future CCS deployment both for low-carbon energy 
generation and direct carbon dioxide removal from the atmosphere, 
which both play a large role in stringent climate change mitigation. 

We show that the water footprint of CCS varies with technology and 
that some technologies remove CO2 in a more water-efficient way than 
others. While, BECCS has the highest water footprint, DACCS is the most 
water efficient technology to directly remove CO2 from the atmosphere 
(Fig. 2). However, BECCS mostly uses green water while DACCS uses 
exclusively blue water and therefore may compete with municipal and 
industrial uses as well as irrigated agriculture. Conversely, green water 
uses for BECCS compete with agro-ecosystems for the use of land and 
associated rainwater needed for biomass production. Among the CCS 
technologies suitable for low carbon electricity production, oxy-
combustion is the process with the lowest water footprint. We also 
illustrate the projected water requirements of the widespread adoption 
of CCS that is required to meet climate targets, considering a combina-
tion of CCS adoption scenarios (Fig. 5) and find that a diversified port-
folio of CCS technologies is likely to have lower impacts on water 
resources than a scenario relying mainly on one technology, such as 
BECCS. Our results enable a more comprehensive understanding of 
water uses by the most prominent CCS technologies and can better 
inform management and policy decisions to identify the most effective 
use of water resources in meeting climate goals. 

4.2. Biomass plantations and water resources 

BECCS has the highest water footprint among CCS technologies and 
it is by far the process that will have greater impacts on global water 
consumption, accounting for more than 97% of the total water footprint 

Table 1 
Inventory of previous studies used to collect data of water 
use efficiencies of biomass feedstock for BECCS. The actual 
water use efficiencies obtained from these studies are shown in 
Supplementary Table 1.  

BIOMASS FEEDSTOCK SOURCE 

POPLAR [58–62] 
MISCANTHUS [63–68] 
CROP RESIDUES [66,70,71] 
EUCALYPTUS [72–76] 
SWITCHGRASS [66,68,71,77–79] 
WILLOW [80–82] 
PERENNIAL GRASSES [67–69]  
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from CCS technologies by 2100 (Fig. 5). Here assume that BECCS 
feedstock consume solely green water resources. However, under irri-
gated condition or in the case of phreatophyte vegetation, blue water 
can also be used by biomass plantation. In fact, cheap blue water from 
the Columbia River in Oregon has been used to irrigate biomass plan-
tations [96]. Irrigation will likely be deployed to increase yields in 
biomass plantations [97] and therefore reduce the large land footprint 

that would be needed to meet climate targets through BECCS [98]. In 
addition, feedstock plantations could also have impacts on downstream 
blue water resources [99] when tree plantations act as phreatophytes 
and tap blue water from shallow aquifers to sustain their high evapo-
transpiration rates. For example, eucalyptus trees have shown the ability 
to take up blue water from the underneath aquifers and deplete blue 
water availability for downstream users [100–102]. Of great concern is 

Fig. 1. BECCS carbon supply chain in low and high efficiency configurations. The percentage values are carbon losses from literature.  

Fig. 2. The water footprint of carbon capture and 
storage technologies. The boxplots reports a range 
of water footprints of post-combustion CCS, pre- 
combustion CCS, and negative emission technolo-
gies. The water footprint of BECCS is shown for the 
low and high efficiency configurations (see Fig. 1). 
The boxplots represent median, 25th and 75th 
percentile, and maximum and minimum values of 
water footprint among the ensemble, outliers are not 
shown in the figure. Note one cubic meter of water is 
equal to one tonne of water.   
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Fig. 3. Water consumption and withdrawal intensities of coal-fired and natural gas-fired plants with and without post-combustion CCS. There are four 
prominent post-combustion CCS technologies: amine absorption, pressure swing adsorption, pressure swing adsorption, and membrane separation. Despite amine 
absorption is proven and commercially available, membrane separation and adsorption post-combustion CCS systems are still at lower stages of development [3]. The 
figure was generated running the Integrated Environmental Control Model (IECM Version 11.2) [43] and considering a different range of air temperatures, relative 
humidity, and gross power inputs. Note that water withdrawal intensity is shown using a logarithmic scale. 

Fig. 4. The water footprint of dedicated 
BECCS feedstock. The figure was generated 
considering feedstock-specific water use ef-
ficiencies from previous studies (Table 1) 
and a BECCS carbon conversion efficiency 
equal to 47% (Fig. 1a). The figure shows 
green and blue water footprint. Because we 
do not assume that dedicated feedstock are 
irrigated, here, blue water for BECCS comes 
solely from the integrated gasification com-
bined cycle process and it is equal to 0.74 
m3/tonne CO2 (Fig. 2). The boxplots repre-
sent median, 25th and 75th percentile, and 
maximum and minimum values of water 
footprint among the ensemble of data 
collected, outliers are not shown in the 
figure. (For interpretation of the references 
to colour in this figure legend, the reader is 
referred to the Web version of this article.)   

L. Rosa et al.                                                                                                                                                                                                                                     



Renewable and Sustainable Energy Reviews 138 (2021) 110511

7

also the planting of large swaths of non-native tree species, many of 
which perish because their water needs are too great for local climate 
conditions [12]. Moreover, high CO2 concentration in the atmosphere 
[103] and future technological development [104] will likely increase 
the efficiency and productivity of photosynthesis in crop plants, poten-
tially reducing the water footprint of biomass plantations. C4 plants 
(corn, sorghum) will have higher water use efficiency than C3 crops 
[105]. Importantly, biomass plantations are likely to have other envi-
ronmental liabilities in addition to impacts on water resources, such as 
nitrogen leakage, soil carbon and phosphorus loss, land use, albedo, and 
local climate change [8,50,106]. 

4.3. CCS and water planetary boundary 

In some regions of the world, CCS adoption will likely put under 
additional stress freshwater resources that are already depleted, chal-
lenging water systems, rising concerns about water scarcity [107] and 
the Earth’s ability to meet the water needs of humanity with its limited 
freshwater resources [21]. While, globally, the water footprint of hu-
manity has not surpassed the planetary boundary of freshwater [108], 
societal water consumption is locally unsustainable in many regions 
worldwide. In fact, it has been estimated that 50% of blue water con-
sumption [109] and 18% of green water consumption [110] overshoots 
maximum sustainable level for local green and blue water resources. An 
increase in water demand due to CCS deployment would draw humanity 
closer to the planetary boundary for both blue water [111] and green 
water [110], which are estimated to be 2800 km3 yr− 1 and 18,000 km3 

yr− 1, respectively (Fig. 6). We find that CCS adoption would increase by 
84 (±56) km3 yr− 1 the current blue water consumption of humanity, 
which is estimated to be 1700 km3 yr− 1 [112]. CCS adoption – through 
BECCS – would require an additional 6757 (±1803) km3 yr− 1 of green 

water from the current green water consumption estimated to be 8720 
km3 yr− 1 [110], or approximately 10% of global total evapotranspira-
tion [113,114]. Therefore, CCS may increase competition for freshwater 
resources with other human activities such as the agricultural, indus-
trial, and domestic sectors [109,115,116] and generate unsustainable 
conditions for freshwater ecosystems [117]. Green water appears to be 
the primary concern, as BECCS plantations will likely draw humanity 
closer to the planetary boundary for green water and generate wide-
spread green water scarcity. 

4.4. CCS and local water scarcity 

Water is a local resource and the planetary boundaries for water need 
to be calculated starting from a local water balance assessment. Differ-
ently, carbon budgets are defined on a global scale, as the impact of 
carbon emissions on climate change does not depend on their specific 
location, but on the global CO2 concentrations. In the case of CCS 
technologies, the exact location where these systems will likely be 
deployed remains unknown. Our study does not investigate the impacts 
of CCS technologies on local water availability and water scarcity. We, 
here, calculate the global amount of water resources that will be claimed 
by CCS technologies to meet stringent climate targets. Therefore, plan-
ning for CCS mitigation strategies for climate change should account for 
local water availability and the patterns of blue and green water scarcity 
[107]. 

We posit that the additional water consumption from CCS could 
strongly affect the local and global water resources exacerbating and 
creating widespread green and blue water scarcity conditions world-
wide. For example, Rosa et al., 2020 [26] estimated that 23% of global 
coal plant capacity would face longer periods of blue water scarcity if 
retrofitted with post-combustion CCS. It is therefore fundamental to 

Fig. 5. Global yearly water consumption 
from CCS in the 21st century in a 1.5◦C 
and 2◦C consistent scenarios. The figure 
shows the water consumption required to 
achieve climate targets across different 
mitigation pathways. All pathways require 
carbon dioxide removal through CCS tech-
nologies, but the amount varies across 
climate scenarios, as do the relative contri-
bution of post-combustion CCS, pre- 
combustion CCS, BECCS, and DACCS. This 
has implications for projected water con-
sumption from CCS adoption. Projected 
carbon dioxide removal scenarios come from 
TIAM and WITCH integrated assessment 
models [33]. Panel a shows the share of 
carbon dioxide removal per technology in 
year 2100 [33]. Water consumption esti-
mates were generated considering a BECCS 
carbon conversion efficiency equal to 47% 
(Fig. 1a).   
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deploy CCS at those facilities not to be impacted by blue water scarcity. 
Appropriate plantations for biomass production to be used as feedstock 
in BECCS systems should be as well planned only in areas not to be 
affected by green water scarcity so as not to require irrigation. 

5. Conclusions 

Water scarcity is progressively perceived as a socio-environmental 
threat that could constrain anthropogenic activities and impair ecosys-
tems. Water is also becoming an increasingly vexing factor in managing 
climate mitigation technologies such as carbon capture and storage. 
What is the global water footprint of carbon capture and storage under 
stringent climate change mitigation policy? We provide an answer to 
this question in the context of the four prominent CCS technologies. We 
estimate that to meet the 1.5 ◦C climate target, CCS would almost double 
the water footprint of humanity. Our results show that the water foot-
print of CCS strongly vary with technology. Some CCS technologies, 
however, consume much less water than others, suggesting that with 
appropriate decision it is possible to capture CO2 in the most water- 
efficient way. Green water appears to be the primary concern, as 
BECCS plantations will likely draw humanity closer to the planetary 
boundary for green water and generate widespread green water scarcity. 
Our results show that a diversified portfolio with different CCS tech-
nologies and balanced strategies of mitigation and carbon removal will 
likely have lower water requirements than a portfolio relying mainly on 
one technology. 

This study quantified the water footprint of carbon capture and 
storage technologies. We showed that CCS adoption necessarily entails 
large water requirements, and that different CCS processes have 
different water requirements to capture carbon dioxide. BECCS has the 
highest water footprint among CCS technologies and it is by far the 
process that will have greater impacts on global water consumption, 
particularly green water. There are already reasons of profound concern 
about whether the future food, energy, and fiber needs can be met using 
the limited freshwater resources of the Planet. The projected water re-
quirements from CCS are of paramount concern and should be accoun-
ted for in the development of future climate policies. The results of this 
study can thus form an important basis for further assessments of how 
climate mitigation policies may increase the water footprint of humanity 

in the coming decades. Future research is required to reduce the water 
footprint of CCS processes and minimize the competition for the scarce 
freshwater resources of the Planet. The assessment of the water footprint 
of a broad range of CCS technologies can generate well-informed pol-
icies aiming to capture CO2 in the most water-efficient way. This study 
provides insights into how CCS adoption consistent with 1.5 ◦C and 2 ◦C 
climate policies will influence the water footprint of humanity in the 
21st century. The results of this study underscore the importance of 
integrating water footprints of CCS in future climate and energy policies. 
Our analysis provides important insights into the hydrological conse-
quences of widespread CCS adoption. We conclude that a water sus-
tainability assessment should be made in siting carbon capture and 
storage technologies. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rser.2020.110511. 

Fig. 6. Estimates of green and blue water footprints relative to proposed planetary boundaries. Bars show current and CCS green and blue water footprints. 
Blue water footprint from CCS is from expected adoption of pre-combustion, post-combustion, and DACCS in year 2100 under 1.5 ◦C climate scenarios. Green water 
footprint from CCS is from BECCS in year 2100 under 1.5 ◦C climate scenarios. The error bar ranges represent the uncertainty range of consumption use of blue water 
and green water from different carbon dioxide removal scenarios [33]. The figure was generated considering a BECCS carbon conversion efficiency equal to 47% 
(Fig. 1a). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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[31] Stenzel F, Gerten D, Werner C, Jägermeyr J. Freshwater requirements of large- 
scale bioenergy plantations for limiting global warming to 1.5◦ C. Environ Res 
Lett 2019;14(8):084001. 

[32] Mielke E, Anadon LD, Narayanamurti V. Water consumption of energy resource 
extraction, processing, and conversion. Belfer Center for Science and 
International Affairs; 2010. 

[33] Realmonte G, Drouet L, Gambhir A, Glynn J, Hawkes A, Köberle AC, Tavoni M. 
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