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ABSTRACT
Story generation is a well-recognized task in computational
creativity research, but one that can be difficult to evaluate
empirically. It is often inefficient and costly to rely solely on
human feedback for judging the quality of generated stories.
We address this by examining the use of linguistic analy-
ses for automated evaluation, using metrics from existing
work on predicting writing quality. We apply these metrics
specifically to story continuation, where a model is given the
beginning of a story and generates the next sentence, which
is useful for systems that interactively support authors’ cre-
ativity in writing. We compare sentences generated by dif-
ferent existing models to human-authored ones according
to the analyses. The results show some meaningful differ-
ences between the models, suggesting that this evaluation
approach may be advantageous for future research.
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1. INTRODUCTION
Automated story generation is a long-pursued endeavor

in artificial intelligence, and one that been used to propose
models of human creativity [12, 46, 56]. This area of research
emerged with formal reasoning approaches based on hand-
authored rules about narrative structure [29, 32, 38], and
has now evolved to accommodate more data-driven meth-
ods where knowledge is acquired automatically from story
corpora [33, 36, 52]. These data-driven systems have the ad-
vantage of promoting open-domain generation, meaning that
they can model the diversity of narrative content contained
in larger corpora. This is particularly useful for systems that
are intended to support the creativity of human authors by
interactively generating from author-provided text, where
models must be flexible enough to accommodate different
story genres.
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One of the difficulties of story generation is how to eval-
uate the quality of the stories empirically, as there are an
immense number of ‘correct’ possibilities for even just the
next sentence in a given story. It is common to rely on hu-
man judgments of story quality for evaluation; for instance,
by asking people to rate stories on different dimensions (e.g.
coherence, creativity) [36, 46, 51] or by instructing them to
edit the stories, where then the edit distance becomes an
inverse measure of quality [33, 48]. However, human evalu-
ations can be time-consuming and costly to carry out, par-
ticularly since they must be repeated for each new set of
generated stories. While evaluating generation quality in a
fully automated way is likely as difficult as the generation
task itself, progress on this research would greatly benefit
from tools that can provide some indication of generation
quality without manual analysis.

For this work, we focus on the task of story generation in a
continuation framework, where the system is given multiple
sentences of a human-written story and is prompted to gen-
erate the subsequent sentence. We use automated linguistic
analyses to compare sentences generated by different models
to the corresponding sentences in the human-authored sto-
ries, which we treat as a gold standard for narrative quality.
These metrics involve straightforward natural language pro-
cessing techniques that have been used to evaluate features
of writing quality in existing work, which we detail in Section
4. We apply these analyses to compare existing data-driven
approaches: a case-based reasoning approach that uses a
nearest-neighbors similarity model to retrieve relevant next
sentences; a recurrent neural network approach that predicts
sentences word-by-word according to learned probabilities;
as well as two relevant random baselines. This work is one
of the few to examine the use of automated linguistic anal-
yses in evaluating story generation. In the long-term view,
we see this as an initial step in exploring how generation
systems can help authors improve their creative writing.

2. STORY CONTINUATION TASK
We apply automated linguistic analyses to evaluate gen-

eration systems in a story continuation task. In this task,
an initial story is provided as input, and the generation sys-
tems output a single next sentence in the story. This design
has been used in previous work [48, 51] and is also related
to interactive fiction where fixed story segments are selected
based on user-provided text (see review in [41]). As dis-
cussed in Section 4, analyzing generated content with refer-
ence to existing stories can make it easier to quantitatively
evaluate, since the features of a generated sentence can be



compared to a human-authored gold standard.
We performed this story continuation task on stories from

the Children’s Book Test1 [21]. This dataset contains chil-
dren’s novels authored between 1850 and 1950 freely avail-
able through Project Gutenberg2. Each book is divided into
passages of 21 sentences. The intended task for this dataset
is to use the first 20 sentences (the context) to predict a word
that is missing from the 21st sentence given a set of candi-
date words. We did not directly attempt this task in this
work, but instead used the context of the passage to gener-
ate the 21st sentence. We performed generation on only the
items in the validation and test sets, which consist of a total
of 18,000 passages with 440 average words per context. Ta-
ble 1 shows two examples of story contexts (in italics) that
come from Andrew Lang’s The Grey Fairy Book and Lucy
Maud Montgomery’s The Golden Road. We used the actual
21st sentence contained in each item as a gold standard with
which to compare our models, based on the assumption that
this sentence is a high-quality continuation of the story.

The CBT dataset is distinct from others that have been
used for story generation research. For example, the ROC-
Stories dataset [43] contains five-sentence stories about stereo-
typical everyday experiences, where the focus is on predict-
ing what is most likely to happen next based on common-
sense expectations. However, these stories are less repre-
sentative of traditional features of narrative that relate to
creativity, such as writing style, character development, and
surprise. Since our future goal is to provide creative author-
ing support, we selected stories known to have these classic
characteristics of narrative.

3. GENERATION MODELS
In this work, we evaluated two different models that both

take an initial story (context) as input and generate the
next sentence: a case-based reasoning (CBR) model and a
recurrent neural network (RNN) model. We also considered
two baseline methods to further inform our interpretation of
the analyses. Table 1 shows examples of sentences produced
by each model.

3.1 Training Data
For training the models, we used a different dataset from

the CBT stories. This dataset also consists of fiction sto-
ries, but from the domain of fiction-writing websites instead
of classic literature. One motivation for this difference is
that in interactive generation systems, a user’s specific story
genre might not be known in advance, so this capacity for
domain adaptation can be particularly important. To com-
pile this dataset, we gathered stories from websites includ-
ing fictionaut.com, ficwad.com, wattpad.com, writ-
erscafe.org, and various other sites containing fiction up-
loaded by authors themselves. These stories cover a wide
range of genres related to fantasy, horror, romance, and sci-
ence fiction; many of them are fan fiction that depict char-
acters and settings from existing works (e.g. Harry Potter,
Naruto, and Twilight). This dataset consists of 607,627 sto-
ries, with a total of 41,458,210 sentences (an average of 68
per story) and 467,023,696 words (an average of 787 per
story). For all models, we established a vocabulary of words
that occurred at least 25 times in this corpus, which ulti-

1fb.ai/babi/
2gutenberg.org/

mately included 83,292 words. All other words were ignored
by the models during training (in the case of the RNN and
1-gram baseline, they were all mapped to a single ‘unknown
word’ token).

3.2 Case-based Reasoning (CBR)
Case-based reasoning is a general AI problem-solving ap-

proach where a new problem is solved by consulting a known
solution for an existing problem [1]. In the context of story
generation, CBR is used to establish an analogy between a
new story and an existing story so that the existing story
can inform the generation of the new story [55]. [51] applied
this paradigm to produce new sentences in a story by retriev-
ing them from a corpus (the ‘case library’). In this system,
given the most recent sentence in a new story, the system
finds the existing sentence in the corpus that is most simi-
lar to the new sentence. It then looks at the story in which
the existing sentence appears and retrieves the sentence that
immediately follows it. The idea is that because of the sim-
ilarity between the new sentence and the existing sentence,
what appears after the existing sentence in its story is also
a reasonable prediction for what happens next in the new
story. To compute similarity, each sentence is encoded as a
bag-of-words vector, whose values are the number of times
each word in the vocabulary occurs in that sentence. Then
the similarity between two sentences is equal to their vector
cosine similarity [34].

We reproduced this same approach here, where the train-
ing set described above is used as the case library from which
sentences are retrieved. In particular, we segmented the
training stories into individual sentences3. We then built a
similarity index4 that efficiently retrieves sentences from this
corpus based on bag-of-words cosine similarity. To generate
the next sentence for a given story context, the model uses
this index to find the sentence most similar to the last one in
the context, locates the story that this sentence appears in,
and then retrieves the sentence that follows it in the story.

3.3 Recurrent Neural Network (RNN)
Recurrent Neural Networks (RNNs) are a general frame-

work for modeling sequence data [13], and are now fre-
quently used in language generation tasks. One approach
is to use the RNN as a language model that predicts the
probability of word sequences. When trained on a corpus of
stories, the RNN learns a conditional probability distribu-
tion of each word occurring in a story given the words that
precede it. This distribution is computed through a set of
nonlinear functions (a hidden layer) that maintain a repre-
sentation of the story up to a word at a particular timepoint
in the sequence. Hidden layers can be stacked so that the
output of one is the input of another. We use hidden lay-
ers with Gated Recurrent Units [8] (GRUs). The input to
the first hidden layer is a word sequence where each word
is encoded as a vector of real values (a word embedding).
The output of the uppermost hidden layer is passed to a top
(softmax) prediction layer which gives the probability distri-
bution of all possible next words in the sequence. Training
occurs by minimizing cross-entropy loss such that param-
eters of the model are optimized to increase the predicted

3Most of the NLP processing in this work, including sen-
tence and word segmentation, part-of-speech tagging, and
syntactic chunking, was done using spaCy: spacy.io/
4Implemented with gensim: radimrehurek.com/gensim/



Papa,’ she said, ‘it is not artificial, it is REAL!’ ‘Ugh!’ said all the ladies-in-waiting, ‘it is real!’ ‘Let us see first
what is in the other casket before we begin to be angry,’ thought the Emperor, and there came out the nightingale.
It sang so beautifully that one could scarcely utter a cross word against it. ‘Superbe! charmant!’ said the ladies-in-
waiting, for they all chattered French, each one worse than the other. ‘How much the bird reminds me of the musical
snuff-box of the late Empress!’ said an old courtier. ‘Ah, yes, it is the same tone, the same execution!’ ‘Yes,’ said
the Emperor; and then he wept like a little child. ‘I hope that this, at least, is not real?’ asked the Princess. ‘Yes, it
is a real bird,’ said those who had brought it. ‘Then let the bird fly away,’ said the Princess; and she would not on
any account allow the Prince to come. But he was nothing daunted. He painted his face brown and black, drew his
cap well over his face, and knocked at the door. ‘Good-day, Emperor,’ he said. ‘Can I get a place here as servant in
the castle?’

R-sent The music plays, it’s my favourite song, But I don’t want to sing along.
CBR A thousand flashbacks appeared in my mind vision as I demanded my brain to find a reasonable expla-

nation for my present state.
1-gram It and placed peered of why 7:40 and bolted you.
RNN Yes, he’s a ‘one’.
Gold ‘Yes,’ said the Emperor, ‘but there are so many who ask for a place that I don’t know whether there

will be one for you; but, still, I will think of you.

“Cecily, you’ve got a dreadful cold,” said the Story Girl anxiously. “In spite of Peg’s ginger tea,” added Felix . “Oh,
that ginger tea was AWFUL,” exclaimed poor Cecily. “I thought I’d never get it down – it was so hot with ginger
– and there was so much of it! But I was so frightened of offending Peg I’d have tried to drink it all if there had
been a bucketful. Oh, yes, it ’s very easy for you all to laugh! You didn’t have to drink it.” “We had to eat two
meals, though,” said Felicity with a shiver. “And I don’t know when those dishes of hers were washed. I just shut
my eyes and took gulps.” “Did you notice the soapy taste in the porridge?” asked the Story Girl. “Oh, there were so
many queer tastes about it I didn’t notice one more than another,” answered Felicity wearily. “What bothers me,”
remarked Peter absently, “is that skull. Do you suppose Peg really finds things out by it?” “Nonsense! How could
she?” scoffed Felix, bold as a lion in daylight.“ She didn’t SAY she did, you know,” I said cautiously. “Well, we’ll
know in time if the things she said were going to happen do,” mused Peter.

R-sent How in the hell am I supposed to say no to that face?
CBR I sighed and stood
1-gram You!
RNN “Course” I said, then nodded.
Gold “Do you suppose your father is really coming home?”

Table 1: Examples of story contexts and corresponding next sentences generated by each model

probabilities of the true words that actually appear a story.
This model is now very common in NLP; see existing work
for its details [9, 39, 49]. After training, the learned distri-
butions can then be used to generate new words in a story
by iteratively sampling from the probabilities of all potential
next words in the story [50].

In this work, we used an RNN with a 300-dimension em-
bedding layer and two 500-dimension GRU layers5. We to-
kenized the stories into lowercased words, and all punctua-
tion was treated in the same way as word tokens. During
training, the model processed entire stories word by word in
batches of 50 stories at a time, using the Adam algorithm
[27] for optimization. To use the trained model to generate
a new sentence for a given context, we fed the context into
the model and sampled a word from the probability distri-
bution for the next word. We appended this word to the
story as the beginning of the next sentence, and continued
adding words to the sentence until an end-of-sentence punc-
tuation token ( ‘.’, ‘!’ and ‘?’) was generated. As has been
done in existing work, e.g. [26], we used a ‘temperature’
variable to smooth some of the randomness in the proba-
bility distribution. Because some of our analyses require us
to present sentences as regular strings rather than lists of
tokens, we ‘detokenized’ the sentences using some heuris-
tics for punctuation formatting, capitalization, and merging

5Implemented with Keras: keras.io/

contractions.
The RNN has some theoretical advantages over the CBR

model. First, it is a productive model, meaning that it can
generate sequences that do not directly appear in its training
data. Whereas there are an exponential number of sequences
the RNN can produce through all possible combinations of
words in the vocabulary, the CBR model is limited to the
sentences it has observed in the corpus. In this way, the
RNN is arguably a better model of computational creativity,
since natural language has this same productivity that leads
authors to write completely novel text. Another important
advantage of the RNN model is that it considers an entire
story when generating the next sentence; in contrast, the
CBR model only observes the most recent sentence. Con-
sequently, the RNN has more opportunity to recall events
or entities that appeared earlier on in the story. Obviously,
authors have long-term memory of what they have written
previously in the story, so the RNN also has this advantage
as a model of creativity. However, it is important to keep
in mind that the CBR model retrieves human-authored sen-
tences, which may be favorable in practical ways over the
RNN-generated ones. It is interesting to compare these par-
ticular models on the same task because while they are both
rely on a data-driven approach, they assemble sequences
from different units of generation (sentences versus words)
and thus are very different models.



3.4 Baselines
We also considered two baseline models as additional com-

parisons in our analyses, both of which randomly generate
sentences without regard to the story context. The first
baseline (R-sent) simply selects a random sentence from the
training corpus. The second baseline is a unigram language
model (1-gram), which like the RNN generates sentences
word by word. Its probability distribution is just the rela-
tive frequency of each word in the training corpus, so each
word is sampled independently from the previous word. By
including these in the analyses, we show the expected perfor-
mance on the metrics even when there is minimal complexity
to the model. However, there is another theoretical purpose
for considering these baselines for this task. Randomness
has been discussed as a desirable feature of creative systems
[5, 53, 42]. These baselines may produce sentences that
are unusual and surprising given the context, which may be
appealing to authors if they can come up with a coherent
interpretation of this randomness. While the metrics consid-
ered here focus generally on writing quality rather than the
effect of randomness on creativity, it is interesting to keep
this mind when interpreting the analyses.

4. AUTOMATED LINGUISTIC ANALYSES
We applied a set of automated linguistic analyses to ex-

amine differences in the writing quality of the generated
sentences within their story context. Each metric is listed
below with an explanation of its relevance to this evalu-
ation task. The metrics can be broadly categorized into
two types: 1) metrics that analyze the generated sentence
in isolation from its context (Story-Independent), and 2)
those that evaluate the sentence with reference to the con-
text (Story-Dependent). Intuitively, the first type of analysis
captures how well-written the sentence is by itself, while the
second determines how apt the sentence is for that particu-
lar story; both dimensions are likely important for creative
writing generation.

4.1 Story-Independent Metrics
Sentence Length: Even with its simplicity, sentence

length is a feature that can reliably discriminate between
text genres, authors, and other characteristics like overall
readability [15, 19, 25]. Length is simply the number of
words in each generated sentence (Metric 1).

Grammaticality: It is generally accepted that high-quality
writing minimizes grammatical mistakes [37], and therefore
error detection and correction is an active research area [6,
31]. To judge the grammaticality of generated sentences, we
used Language Tool6 [40], a rule-based system that detects
various grammatical as well as spelling errors. Using this
system we computed an overall grammaticality score (Met-
ric 2) for each sentence, equal to the proportion of total
words in the sentence deemed to be grammatically correct.

Lexical Diversity: High-quality writing has been found
to contain a larger set of unique words and phrases, and
avoids overly repetitious use of the same phrases [7, 10, 24].
We analyzed the number of unique words (types) in the gen-
erated sentences relative to the number of total word occur-
rences (tokens), known as the type-token ratio (Metric 3). A
single type-token ratio was computed for each model from
the entire set of sentences generated by that model. Be-

6Code at: github.com/cnap/grammaticality-metrics

cause our models were only aware of words that occurred 25
or more times in the training data, we only counted words in
this vocabulary in the ratio (in contrast to the R-sent and
CBR models, the RNN and 1-gram models never had the
opportunity to generate words not in this vocabulary). We
also measured the number of unique trigrams in the same
way, by computing the total proportion of unique trigrams
to the total number of trigram occurrences in the generated
sentences (Metric 4), again only considering trigrams where
all tokens were contained in the training vocabulary.

Lexical Frequency: Related to lexical diversity, more
advanced writing often contains fewer common words [11,
24, 37]. We measured the average log frequency of the words
in each generated sentence (Metric 5), where the frequen-
cies were Good-Turing smoothed counts taken from the 3-
billion word Reddit Comment Corpus7. To keep this metric
consistent with the others where higher scores are hypoth-
esized as more favorable, we report the negative (inverse)
log frequency, so that higher numbers indicate lower word
frequency.

Syntactic Complexity: Existing research has documented
that high-proficency writing tends to be more syntactically
complex [4, 37, 47, 57, 58]. We examined this complexity in
terms of the number and length of syntactic phrases (often
called chunks [54]) in the generated sentences. We counted
the total number of noun phrases (Metric 6) and words per
noun phrase (Metric 7), and equivalently the number of verb
phrases (Metric 8) and words per verb phrase (Metric 9). To
account for the effect of sentence length on these measures
(i.e. longer sentences may naturally contain more and longer
phrases), we divided all measures for each sentence by its to-
tal number of words.

4.2 Story-Dependent Metrics
Lexical Cohesion: Clearly, a generated sentence should

be coherent with the story in which it occurs. There are
various dimensions to coherence, one of which is lexical co-
hesion [20], by which the words in the generated sentence
should be semantically related to the words in the story con-
text. While deep modeling of semantics is an open problem,
there are some simple shallow metrics for quantifying lexical
similarity between text segments [16, 30]. First, and most
simply, we computed Jaccard similarity [23] (Metric 10) to
find the overall proportion of overlapping words between the
context and generated sentence. We filtered this measure
to include only words tagged as adjectives, adverbs, inter-
jections, nouns, pronouns, proper nouns, and verbs (with
the exception of pronouns, these are the categories associ-
ated with content words). Second, we examined similarity
in terms of word embeddings, which represent the meaning
of a word as an n-dimensional vector of real values, such
that words with similar meanings have similar vectors. We
specifically used the GloVe embedding vectors [45] trained
on the Common Crawl corpus8. We computed the mean
cosine similarity of the vectors for all pairs of content words
between a generated sentence and its context (Metric 11).

Alternatively, in contrast to computing similarity at the
word level, we also looked at similarity between full sen-
tence encodings computed by the skip-thought model [28].
Analogous to word embeddings where the model is trained
to predict words from other nearby words, the skip-thought

7spacy.io/docs/api/token
8spacy.io/docs/usage/word-vectors-similarities



model learns to represent sentences according to their neigh-
boring sentences. We used 4800-dimension sentence vectors
trained on the 11,000 books in the BookCorpus dataset9 to
encode each of the sentences in the context as well as the
generated sentence. We then computed the cosine similarity
between the mean of the context sentence vectors and the
generated sentence (Metric 12).

Style Matching: Previous work has shown that auto-
mated analyses of writing style can distinguish successful
from unsuccessful writers [18, 44]. Since proficient authors
exhibit style consistency across a particular work [17], we
similarly posit that generated sentences should match the
style of their contexts. We examined style similarity in
terms of part-of-speech (POS) categories. First, we com-
puted the similarity in the distributions of word categories
between the generated sentence and its story context us-
ing the same approach as [22] (Metric 13). Specifically, we
compared the number of adverbs, adjectives, conjunctions,
determiners, nouns, pronouns, prepositions and punctuation
tokens. The similarity for each category can be quantified

as 1 − |catcontext−catgensent|
catcontext+catgensent

, where cat is the proportion of

words of that category in that sequence. For a given context
and generated sentence we averaged the similarity scores
across all categories to get one overall style matching score.
In addition to the category distribution of individual words,
we also looked at style similarity in terms of POS trigrams [2]
(Metric 14). To do this, we computed the Jaccard similarity
between the category trigrams in each generated sentence
and those in the corresponding context.

Entity Coreference: Similar to the expectation of lex-
ical cohesion between sentences in a text, a generated sen-
tence should refer to entities that have been previously in-
troduced in the story. Although generated sentences can
introduce new entities into the story without necessarily be-
ing incoherent, entity coreference has been used in existing
work for automatically judging coherence [3, 14]. To get an
entity coreference rate, we found the proportion of entities
(equivalent to noun phrases) in the generated sentence that
coreferred to an entity in the corresponding context (Metric
15). Higher coreference rates indicate more entity coherence
between the generated sentence and context.

5. RESULTS
Table 2 shows the mean metric scores across all 18,000

generated sentences for each model compared to the origi-
nal (gold) sentences contained in the CBT stories. Differ-
ences between models were statistically evaluated using two-
sample Monte Carlo permutation tests, with significance
shown at p < 0.005 due to Bonferroni adjustment (there are
10 model comparisons, so the alpha level of 0.05 is adjusted
to 0.05/10 = 0.005).

There are several notable results to highlight in this ta-
ble. First, the sentences generated by the models were much
shorter than the corresponding gold sentences, which may
reflect the domain difference between the training corpus
and the CBT stories. Overall, the gold sentences most of-
ten obtained the highest scores on the metrics, which sug-
gests that these metrics are correlated with writing quality.
However, this was not a universal finding. Among the story-
independent analyses, the order of the model scores was very
mixed. One unexpected result was that the RNN had a

9github.com/ryankiros/skip-thoughts

higher overall grammaticality score than the gold sentences.
Since it is probably not the case that the gold sentences
are ungrammatical, it is worth exploring whether there were
unique features in the gold sentences that the Language Tool
scorer consistently recognized as ungrammatical.

Despite the existing findings that better writing uses a
greater variety of words, here the gold sentences had a lower
type-token and unique trigram ratio than all models except
for the RNN. The random baselines actually demonstrated
the highest scores on these measures. This could again be
a domain-specific difference between the gold and generated
sentences, but the fact that the RNN had even lower lexical
diversity than the gold sentences is also an interesting con-
sideration. It is probably less surprisingly that the 1-gram
model had the highest unique trigram ratio, since it obeys
no constraints on which word combinations qualify as gram-
matical. There is likely a middle ground for the use of unique
phrases that balances creativity with conventionality, since
the 1-gram model does not fare better on the other quality
measures. It may also be the case that in work where lexi-
cal diversity is modeled as a feature of good writing, a com-
parison was made between more and less proficient human
writers, rather than with random methods. On the other
hand, the findings for word frequency favored the human-
authored sentences as expected, as these sentences did use
less frequent words. Along with having a narrower vocabu-
lary, the RNN model tended towards more common words
relative to the other models.

In terms of syntactic complexity, the gold sentences ap-
peared to contain far more noun and verb phrases than the
other models, but this was not the case once sentence length
was taken into account. While it was expected that the
1-gram sentences had little syntactic complexity (since the
model has no knowledge of syntax), it was surprising that
the gold phrases were also much shorter on average than the
phrases generated by the other models. The RNN model was
notable for its verb phrases, which were longer and more fre-
quent than those in the other sentences.

It is intriguing that significant differences emerged be-
tween the R-sent and CBR models on the story-independent
metrics, since these sentences come from the same corpus
and therefore would be expected to have similar features. It
is likely that the CBR model selected sentences with specific
features not evenly distributed across the corpus at large; for
example, the CBR sentences were longer, more grammatical,
contained rarer words, and had less verb phrase complexity.

The results for the story-dependent analyses are more con-
sistent across metrics. For all measures, the gold sentences
scored the highest: they were more semantically related to
their story contexts, were more stylistically similar in terms
of part-of-speech categories, and the entities they mentioned
were more likely to corefer to those in the context. This,
along with the low performance of the random baselines on
these measures, suggests that these metrics do capture story
coherence.

The story-dependent metrics are particularly useful for
comparing the CBR and RNN models. In Section 3, we
discussed how in contrast to the CBR model, the RNN
can in theory observe the entire story context and produce
sentences more targeted to that unique context. We ob-
serve some practical evidence for this in these results: the
RNN sentences were more semantically related to the con-
text in terms of Jaccard and skip-thought similarity, and



R-sent CBR 1-gram RNN Gold
Story-independent metrics
1. Sentence length 13.36 15.56*‡§ 13.67 13.10 28.84*†‡§
2. Grammaticality 0.957‡ 0.961*‡ 0.925 0.992*†‡? 0.982*†‡
3. Type-token ratio 0.057†§? 0.042§? 0.057†§? 0.010 0.020§
4. Unique trigram ratio 0.776†§? 0.491§? 0.946*†§? 0.307 0.418§
5. Inverse word frequency 7.078§ 7.122*‡§ 7.038§ 6.056 7.399*†‡§
6. Noun phrases 0.238‡§ 0.239‡§ 0.192 0.227‡ 0.225‡
7. Noun phrase length 0.149? 0.141? 0.144? 0.143? 0.087
8. Verb phrases 0.190†‡? 0.186‡? 0.164 0.191†‡? 0.181‡
9. Verb phrase length 0.367†‡? 0.346‡? 0.261? 0.403*†‡? 0.219
Story-dependent metrics
10. Jaccard similarity 0.004‡ 0.005*‡ 0.003 0.006*†‡ 0.036*†‡§
11. GloVe similarity 0.227‡ 0.228‡ 0.192 0.227‡ 0.246*†‡§
12. Skip-thought similarity 0.682 0.713* 0.718*† 0.733*†‡ 0.799*†‡§
13. Word POS similarity 0.503‡ 0.541*‡§ 0.442 0.501‡ 0.698*†‡§
14. Trigram POS similarity 0.028‡ 0.034*‡§ 0.016 0.031*‡ 0.070*†‡§
15. Entity coreference rate 0.440‡ 0.456*‡ 0.328 0.536*†‡ 0.644*†‡§

Statistical significance, p < 0.005: *greater than R-sent; †greater than CBR;

‡greater than Unigram; §greater than RNN; ?greater than Gold

Table 2: Mean scores on metrics for sentences generated by each model and gold sentences

also more frequently referred to entities introduced in the
context. However, the CBR sentences still demonstrated
greater stylistic similarity to their contexts than the RNN
sentences.

6. DISCUSSION
Overall our results suggest that automated linguistic anal-

yses can capture meaningful differences between generation
models, particularly in a story-continuation framework where
generated sequences can be directly compared between mod-
els. Given the results, particularly for the story-independent
analyses, it may not necessarily be the goal of a system to
maximize scores on these metrics. Instead, the gold stan-
dard sentences help interpret the comparison between the
models. If the goal is to make the generated sentences more
like the human-authored ones, then progress can be evalu-
ated in terms of the similarity between the gold sentences
and the generated ones.

We made use of existing NLP techniques to measure gen-
eration quality according to existing indicators of good writ-
ing. Because automatically evaluating writing quality is an
ongoing research problem, we acknowledge that the analyses
used here are relatively shallow metrics based on the tools
available. There are more advanced linguistic analyses that
we plan to explore in the future, such as entity grids [3] and
discourse parsing [35], which may detect deeper coherence
relations in stories.

There is an open question of exactly what type of linguistic
analyses focus specifically on creativity. Our metrics do not
directly address some of the more complex dimensions spe-
cific to the domain of narrative, such as character develop-
ment, plot structure, and suspense. Automatically modeling
these type of features is an extremely difficult language un-
derstanding problem, for which developing effective metrics
still requires much research. However, keeping in mind our
goal of providing automated creative assistance, we see any
characteristics that make generated content more appealing
to authors as relevant to creativity. This work proposes the
exploration of automated linguistic analyses for identifying
these characteristics.
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