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Abstract

We introduce a new large-scale NLI bench-
mark dataset, collected via an iterative, ad-
versarial human-and-model-in-the-loop proce-
dure. We show that training models on this
new dataset leads to state-of-the-art perfor-
mance on a variety of popular NLI bench-
marks, while posing a more difficult challenge
with its new test set. Our analysis sheds light
on the shortcomings of current state-of-the-
art models, and shows that non-expert annota-
tors are successful at finding their weaknesses.
The data collection method can be applied in
a never-ending learning scenario, becoming a
moving target for NLU, rather than a static
benchmark that will quickly saturate.

1 Introduction

Progress in AI has been driven by, among other
things, the development of challenging large-scale
benchmarks like ImageNet (Russakovsky et al.,
2015) in computer vision, and SNLI (Bowman
et al., 2015), SQuAD (Rajpurkar et al., 2016), and
others in natural language processing (NLP). Re-
cently, for natural language understanding (NLU)
in particular, the focus has shifted to combined
benchmarks like SentEval (Conneau and Kiela,
2018) and GLUE (Wang et al., 2018), which track
model performance on multiple tasks and provide
a unified platform for analysis.

With the rapid pace of advancement in AI, how-
ever, NLU benchmarks struggle to keep up with
model improvement. Whereas it took around 15
years to achieve “near-human performance” on
MNIST (LeCun et al., 1998; Cireşan et al., 2012;
Wan et al., 2013) and approximately 7 years to
surpass humans on ImageNet (Deng et al., 2009;
Russakovsky et al., 2015; He et al., 2016), the
GLUE benchmark did not last as long as we would
have hoped after the advent of BERT (Devlin et al.,

2018), and rapidly had to be extended into Super-
GLUE (Wang et al., 2019). This raises an important
question: Can we collect a large benchmark dataset
that can last longer?

The speed with which benchmarks become ob-
solete raises another important question: are cur-
rent NLU models genuinely as good as their high
performance on benchmarks suggests? A grow-
ing body of evidence shows that state-of-the-art
models learn to exploit spurious statistical patterns
in datasets (Gururangan et al., 2018; Poliak et al.,
2018; Tsuchiya, 2018; Glockner et al., 2018; Geva
et al., 2019; McCoy et al., 2019), instead of learn-
ing meaning in the flexible and generalizable way
that humans do. Given this, human annotators—be
they seasoned NLP researchers or non-experts—
might easily be able to construct examples that
expose model brittleness.

We propose an iterative, adversarial human-and-
model-in-the-loop solution for NLU dataset collec-
tion that addresses both benchmark longevity and
robustness issues. In the first stage, human anno-
tators devise examples that our current best mod-
els cannot determine the correct label for. These
resulting hard examples—which should expose ad-
ditional model weaknesses—can be added to the
training set and used to train a stronger model.
We then subject the strengthened model to the
same procedure and collect weaknesses over sev-
eral rounds. After each round, we train a new
model and set aside a new test set. The process
can be iteratively repeated in a never-ending learn-
ing (Mitchell et al., 2018) setting, with the model
getting stronger and the test set getting harder in
each new round. Thus, not only is the resultant
dataset harder than existing benchmarks, but this
process also yields a “moving post” dynamic target
for NLU systems, rather than a static benchmark
that will eventually saturate.

Our approach draws inspiration from recent ef-
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Figure 1: Adversarial NLI data collection via human-and-model-in-the-loop enabled training (HAMLET). The
four steps make up one round of data collection. In step 3, model-correct examples are included in the training set;
development and test sets are constructed solely from model-wrong verified-correct examples.

forts that gamify collaborative training of machine
learning agents over multiple rounds (Yang et al.,
2017) and pit “builders” against “breakers” to learn
better models (Ettinger et al., 2017). Recently, Di-
nan et al. (2019) showed that such an approach can
be used to make dialogue safety classifiers more ro-
bust. Here, we focus on natural language inference
(NLI), arguably the most canonical task in NLU.
We collected three rounds of data, and call our new
dataset Adversarial NLI (ANLI).

Our contributions are as follows: 1) We intro-
duce a novel human-and-model-in-the-loop dataset,
consisting of three rounds that progressively in-
crease in difficulty and complexity, that includes
annotator-provided explanations. 2) We show
that training models on this new dataset leads
to state-of-the-art performance on a variety of
popular NLI benchmarks. 3) We provide a de-
tailed analysis of the collected data that sheds light
on the shortcomings of current models, catego-
rizes the data by inference type to examine weak-
nesses, and demonstrates good performance on
NLI stress tests. The ANLI dataset is available
at github.com/facebookresearch/anli/. A demo is
available at adversarialnli.com.

2 Dataset collection

The primary aim of this work is to create a new
large-scale NLI benchmark on which current state-
of-the-art models fail. This constitutes a new target
for the field to work towards, and can elucidate
model capabilities and limitations. As noted, how-
ever, static benchmarks do not last very long these
days. If continuously deployed, the data collection

procedure we introduce here can pose a dynamic
challenge that allows for never-ending learning.

2.1 HAMLET

To paraphrase the great bard (Shakespeare, 1603),
there is something rotten in the state of the art. We
propose Human-And-Model-in-the-Loop Enabled
Training (HAMLET), a training procedure to au-
tomatically mitigate problems with current dataset
collection procedures (see Figure 1).

In our setup, our starting point is a base model,
trained on NLI data. Rather than employing auto-
mated adversarial methods, here the model’s “ad-
versary” is a human annotator. Given a context
(also often called a “premise” in NLI), and a desired
target label, we ask the human writer to provide a
hypothesis that fools the model into misclassifying
the label. One can think of the writer as a “white
hat” hacker, trying to identify vulnerabilities in the
system. For each human-generated example that is
misclassified, we also ask the writer to provide a
reason why they believe it was misclassified.

For examples that the model misclassified, it is
necessary to verify that they are actually correct
—i.e., that the given context-hypothesis pairs gen-
uinely have their specified target label. The best
way to do this is to have them checked by another
human. Hence, we provide the example to human
verifiers. If two human verifiers agree with the
writer, the example is considered a good exam-
ple. If they disagree, we ask a third human verifier
to break the tie. If there is still disagreement be-
tween the writer and the verifiers, the example is
discarded. If the verifiers disagree, they can over-



Context Hypothesis Reason Round Labels Annotationsorig. pred. valid.

Roberto Javier Mora Garcı́a (c. 1962 – 16
March 2004) was a Mexican journalist and ed-
itorial director of “El Mañana”, a newspaper
based in Nuevo Laredo, Tamaulipas, Mexico.
He worked for a number of media outlets in
Mexico, including the “El Norte” and “El Di-
ario de Monterrey”, prior to his assassination.

Another individual
laid waste to Roberto
Javier Mora Garcia.

The context states that Roberto
Javier Mora Garcia was assassi-
nated, so another person had to
have “laid waste to him.” The sys-
tem most likely had a hard time fig-
uring this out due to it not recogniz-
ing the phrase “laid waste.”

A1
(Wiki)

E N E E Lexical (assassina-
tion, laid waste),
Tricky (Presupposi-
tion), Standard (Id-
iom)

A melee weapon is any weapon used in direct
hand-to-hand combat; by contrast with ranged
weapons which act at a distance. The term
“melee” originates in the 1640s from the French
word “mĕlée”, which refers to hand-to-hand
combat, a close quarters battle, a brawl, a con-
fused fight, etc. Melee weapons can be broadly
divided into three categories

Melee weapons are
good for ranged and
hand-to-hand combat.

Melee weapons are good for hand
to hand combat, but NOT ranged.

A2
(Wiki)

C E C N C Standard (Con-
junction), Tricky
(Exhaustification),
Reasoning (Facts)

If you can dream it, you can achieve it—unless
you’re a goose trying to play a very human game
of rugby. In the video above, one bold bird took
a chance when it ran onto a rugby field mid-play.
Things got dicey when it got into a tussle with
another player, but it shook it off and kept right
on running. After the play ended, the players
escorted the feisty goose off the pitch. It was
a risky move, but the crowd chanting its name
was well worth it.

The crowd believed
they knew the name of
the goose running on
the field.

Because the crowd was chanting
its name, the crowd must have be-
lieved they knew the goose’s name.
The word “believe” may have made
the system think this was an am-
biguous statement.

A3
(News)

E N E E Reasoning (Facts),
Reference (Coref-
erence)

Table 1: Examples from development set. ‘An’ refers to round number, ‘orig.’ is the original annotator’s gold label,
‘pred.’ is the model prediction, ‘valid.’ are the validator labels, ‘reason’ was provided by the original annotator,
‘Annotations’ are the tags determined by an linguist expert annotator.

rule the original target label of the writer.
Once data collection for the current round is fin-

ished, we construct a new training set from the
collected data, with accompanying development
and test sets, which are constructed solely from
verified correct examples. The test set was further
restricted so as to: 1) include pairs from “exclusive”
annotators who are never included in the training
data; and 2) be balanced by label classes (and gen-
res, where applicable). We subsequently train a
new model on this and other existing data, and re-
peat the procedure.

2.2 Annotation details
We employed Mechanical Turk workers with quali-
fications and collected hypotheses via the ParlAI1

framework. Annotators are presented with a con-
text and a target label—either ‘entailment’, ‘con-
tradiction’, or ‘neutral’—and asked to write a hy-
pothesis that corresponds to the label. We phrase
the label classes as “definitely correct”, “definitely
incorrect”, or “neither definitely correct nor defi-
nitely incorrect” given the context, to make the task
easier to grasp. Model predictions are obtained
for the context and submitted hypothesis pair. The
probability of each label is shown to the worker as
feedback. If the model prediction was incorrect,
the job is complete. If not, the worker continues
to write hypotheses for the given (context, target-
label) pair until the model predicts the label incor-

1https://parl.ai/

rectly or the number of tries exceeds a threshold (5
tries in the first round, 10 tries thereafter).

To encourage workers, payments increased as
rounds became harder. For hypotheses that the
model predicted incorrectly, and that were verified
by other humans, we paid an additional bonus on
top of the standard rate.

2.3 Round 1

For the first round, we used a BERT-Large model
(Devlin et al., 2018) trained on a concatenation of
SNLI (Bowman et al., 2015) and MNLI (Williams
et al., 2017), and selected the best-performing
model we could train as the starting point for our
dataset collection procedure. For Round 1 contexts,
we randomly sampled short multi-sentence pas-
sages from Wikipedia (of 250-600 characters) from
the manually curated HotpotQA training set (Yang
et al., 2018). Contexts are either ground-truth con-
texts from that dataset, or they are Wikipedia pas-
sages retrieved using TF-IDF (Chen et al., 2017)
based on a HotpotQA question.

2.4 Round 2

For the second round, we used a more powerful
RoBERTa model (Liu et al., 2019b) trained on
SNLI, MNLI, an NLI-version2 of FEVER (Thorne
et al., 2018), and the training data from the previ-
ous round (A1). After a hyperparameter search, we

2The NLI version of FEVER pairs claims with evidence
retrieved by Nie et al. (2019) as (context, hypothesis) inputs.



Dataset Genre Context Train / Dev / Test Model error rate Tries Time (sec.)
Unverified Verified mean/median per verified ex.

A1 Wiki 2,080 16,946 / 1,000 / 1,000 29.68% 18.33% 3.4 / 2.0 199.2 / 125.2

A2 Wiki 2,694 45,460 / 1,000 / 1,000 16.59% 8.07% 6.4 / 4.0 355.3 / 189.1

A3 Various 6,002 100,459 / 1,200 / 1,200 17.47% 8.60% 6.4 / 4.0 284.0 / 157.0
(Wiki subset) 1,000 19,920 / 200 / 200 14.79% 6.92% 7.4 / 5.0 337.3 / 189.6

ANLI Various 10,776 162,865 / 3,200 / 3,200 18.54% 9.52% 5.7 / 3.0 282.9 / 156.3

Table 2: Dataset statistics: ‘Model error rate’ is the percentage of examples that the model got wrong; ‘unverified’
is the overall percentage, while ‘verified’ is the percentage that was verified by at least 2 human annotators.

selected the model with the best performance on
the A1 development set. Then, using the hyperpa-
rameters selected from this search, we created a
final set of models by training several models with
different random seeds. During annotation, we con-
structed an ensemble by randomly picking a model
from the model set as the adversary each turn. This
helps us avoid annotators exploiting vulnerabilities
in one single model. A new non-overlapping set of
contexts was again constructed from Wikipedia via
HotpotQA using the same method as Round 1.

2.5 Round 3

For the third round, we selected a more diverse
set of contexts, in order to explore robustness un-
der domain transfer. In addition to contexts from
Wikipedia for Round 3, we also included con-
texts from the following domains: News (extracted
from Common Crawl), fiction (extracted from Sto-
ryCloze (Mostafazadeh et al., 2016) and CBT (Hill
et al., 2015)), formal spoken text (excerpted from
court and presidential debate transcripts in the Man-
ually Annotated Sub-Corpus (MASC) of the Open
American National Corpus3), and causal or pro-
cedural text, which describes sequences of events
or actions, extracted from WikiHow. Finally, we
also collected annotations using the longer contexts
present in the GLUE RTE training data, which
came from the RTE5 dataset (Bentivogli et al.,
2009). We trained an even stronger RoBERTa en-
semble by adding the training set from the second
round (A2) to the training data.

2.6 Comparing with other datasets

The ANLI dataset, comprising three rounds, im-
proves upon previous work in several ways. First,
and most obviously, the dataset is collected to
be more difficult than previous datasets, by de-
sign. Second, it remedies a problem with SNLI,

3anc.org/data/masc/corpus/

namely that its contexts (or premises) are very
short, because they were selected from the image
captioning domain. We believe longer contexts
should naturally lead to harder examples, and so
we constructed ANLI contexts from longer, multi-
sentence source material.

Following previous observations that models
might exploit spurious biases in NLI hypotheses,
(Gururangan et al., 2018; Poliak et al., 2018), we
conduct a study of the performance of hypothesis-
only models on our dataset. We show that such
models perform poorly on our test sets.

With respect to data generation with naı̈ve anno-
tators, Geva et al. (2019) noted that models can pick
up on annotator bias, modelling annotator artefacts
rather than the intended reasoning phenomenon.
To counter this, we selected a subset of annotators
(i.e., the “exclusive” workers) whose data would
only be included in the test set. This enables us to
avoid overfitting to the writing style biases of par-
ticular annotators, and also to determine how much
individual annotator bias is present for the main
portion of the data. Examples from each round of
dataset collection are provided in Table 1.

Furthermore, our dataset poses new challenges
to the community that were less relevant for previ-
ous work, such as: can we improve performance
online without having to train a new model from
scratch every round, how can we overcome catas-
trophic forgetting, how do we deal with mixed
model biases, etc. Because the training set includes
examples that the model got right but were not veri-
fied, learning from noisy and potentially unverified
data becomes an additional interesting challenge.

3 Dataset statistics

The dataset statistics can be found in Table 2. The
number of examples we collected increases per
round, starting with approximately 19k examples
for Round 1, to around 47k examples for Round 2,



Model Training Data A1 A2 A3 ANLI ANLI-E SNLI MNLI-m/-mm

BERT

S,M?1 00.0 28.9 28.8 19.8 19.9 91.3 86.7 / 86.4
+A1 44.2 32.6 29.3 35.0 34.2 91.3 86.3 / 86.5
+A1+A2 57.3 45.2 33.4 44.6 43.2 90.9 86.3 / 86.3
+A1+A2+A3 57.2 49.0 46.1 50.5 46.3 90.9 85.6 / 85.4
S,M,F,ANLI 57.4 48.3 43.5 49.3 44.2 90.4 86.0 / 85.8

XLNet S,M,F,ANLI 67.6 50.7 48.3 55.1 52.0 91.8 89.6 / 89.4

RoBERTa

S,M 47.6 25.4 22.1 31.1 31.4 92.6 90.8 / 90.6
+F 54.0 24.2 22.4 32.8 33.7 92.7 90.6 / 90.5
+F+A1?2 68.7 19.3 22.0 35.8 36.8 92.8 90.9 / 90.7
+F+A1+A2?3 71.2 44.3 20.4 43.7 41.4 92.9 91.0 / 90.7
S,M,F,ANLI 73.8 48.9 44.4 53.7 49.7 92.6 91.0 / 90.6

Table 3: Model Performance. ‘S’ refers to SNLI, ‘M’ to MNLI dev (-m=matched, -mm=mismatched), and ‘F’ to
FEVER; ‘A1–A3’ refer to the rounds respectively and ‘ANLI’ refers to A1+A2+A3, ‘-E’ refers to test set examples
written by annotators exclusive to the test set. Datasets marked ‘?n’ were used to train the base model for round n,
and their performance on that round is underlined (A2 and A3 used ensembles, and hence have non-zero scores).

to over 103k examples for Round 3. We collected
more data for later rounds not only because that
data is likely to be more interesting, but also simply
because the base model is better and so annotation
took longer to collect good, verified correct exam-
ples of model vulnerabilities.

For each round, we report the model error rate,
both on verified and unverified examples. The un-
verified model error rate captures the percentage
of examples where the model disagreed with the
writer’s target label, but where we are not (yet)
sure if the example is correct. The verified model
error rate is the percentage of model errors from
example pairs that other annotators confirmed the
correct label for. Note that error rate is a useful way
to evaluate model quality: the lower the model er-
ror rate—assuming constant annotator quality and
context-difficulty—the better the model.

We observe that model error rates decrease as
we progress through rounds. In Round 3, where
we included a more diverse range of contexts
from various domains, the overall error rate went
slightly up compared to the preceding round, but
for Wikipedia contexts the error rate decreased sub-
stantially. While for the first round roughly 1 in
every 5 examples were verified model errors, this
quickly dropped over consecutive rounds, and the
overall model error rate is less than 1 in 10. On
the one hand, this is impressive, and shows how far
we have come with just three rounds. On the other
hand, it shows that we still have a long way to go
if even untrained annotators can fool ensembles of
state-of-the-art models with relative ease.

Table 2 also reports the average number of
“tries”, i.e., attempts made for each context until a
model error was found (or the number of possible

tries is exceeded), and the average time this took
(in seconds). Again, these metrics are useful for
evaluating model quality: observe that the average
number of tries and average time per verified error
both go up with later rounds. This demonstrates
that the rounds are getting increasingly more diffi-
cult. Further dataset statistics and inter-annotator
agreement are reported in Appendix C.

4 Results

Table 3 reports the main results. In addition to
BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019b), we also include XLNet (Yang et al.,
2019) as an example of a strong, but different,
model architecture. We show test set performance
on the ANLI test sets per round, the total ANLI test
set, and the exclusive test subset (examples from
test-set-exclusive workers). We also show accuracy
on the SNLI test set and the MNLI development
set (for the purpose of comparing between different
model configurations across table rows). In what
follows, we discuss our observations.

Base model performance is low. Notice that the
base model for each round performs very poorly on
that round’s test set. This is the expected outcome:
For round 1, the base model gets the entire test set
wrong, by design. For rounds 2 and 3, we used an
ensemble, so performance is not necessarily zero.
However, as it turns out, performance still falls
well below chance4, indicating that workers did not
find vulnerabilities specific to a single model, but
generally applicable ones for that model class.

4Chance is at 33%, since the test set labels are balanced.
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Rounds become increasingly more difficult.
As already foreshadowed by the dataset statistics,
round 3 is more difficult (yields lower performance)
than round 2, and round 2 is more difficult than
round 1. This is true for all model architectures.

Training on more rounds improves robustness.
Generally, our results indicate that training on more
rounds improves model performance. This is true
for all model architectures. Simply training on
more “normal NLI” data would not help a model be
robust to adversarial attacks, but our data actively
helps mitigate these.

RoBERTa achieves state-of-the-art perfor-
mance... We obtain state of the art performance
on both SNLI and MNLI with the RoBERTa
model finetuned on our new data. The RoBERTa
paper (Liu et al., 2019b) reports a score of 90.2 for
both MNLI-matched and -mismatched dev, while
we obtain 91.0 and 90.7. The state of the art on
SNLI is currently held by MT-DNN (Liu et al.,
2019a), which reports 91.6 compared to our 92.9.

...but is outperformed when it is base model.
However, the base (RoBERTa) models for rounds
2 and 3 are outperformed by both BERT and XL-
Net (rows 5, 6 and 10). This shows that annotators
found examples that RoBERTa generally struggles
with, which cannot be mitigated by more exam-
ples alone. It also implies that BERT, XLNet, and
RoBERTa all have different weaknesses, possibly
as a function of their training data (BERT, XLNet
and RoBERTa were trained on different data sets,
which might or might not have contained informa-
tion relevant to the weaknesses).
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Figure 3: Comparison of verified, unverified and com-
bined data, where data sets are downsampled to ensure
equal training sizes.

Continuously augmenting training data does
not downgrade performance. Even though
ANLI training data is different from SNLI and
MNLI, adding it to the training set does not harm
performance on those tasks. Our results (see also
rows 2-3 of Table 6) suggest the method could suc-
cessfully be applied for multiple additional rounds.

Exclusive test subset difference is small. We in-
cluded an exclusive test subset (ANLI-E) with ex-
amples from annotators never seen in training, and
find negligible differences, indicating that our mod-
els do not over-rely on annotator’s writing styles.

4.1 The effectiveness of adversarial training

We examine the effectiveness of the adversarial
training data in two ways. First, we sample from
respective datasets to ensure exactly equal amounts
of training data. Table 5 shows that the adversarial
data improves performance, including on SNLI and
MNLI when we replace part of those datasets with
the adversarial data. This suggests that the adver-
sarial data is more data efficient than “normally
collected” data. Figure 2 shows that adversarial
data collected in later rounds is of higher quality
and more data-efficient.

Second, we compared verified correct examples
of model vulnerabilities (examples that the model
got wrong and were verified to be correct) to unver-
ified ones. Figure 3 shows that the verified correct
examples are much more valuable than the unveri-
fied examples, especially in the later rounds (where
the latter drops to random).

4.2 Stress Test Results

We also test models on two recent hard NLI test
sets: SNLI-Hard (Gururangan et al., 2018) and



Model SNLI-Hard NLI Stress Tests

AT (m/mm) NR LN (m/mm) NG (m/mm) WO (m/mm) SE (m/mm)

Previous models 72.7 14.4 / 10.2 28.8 58.7 / 59.4 48.8 / 46.6 50.0 / 50.2 58.3 / 59.4

BERT (All) 82.3 75.0 / 72.9 65.8 84.2 / 84.6 64.9 / 64.4 61.6 / 60.6 78.3 / 78.3
XLNet (All) 83.5 88.2 / 87.1 85.4 87.5 / 87.5 59.9 / 60.0 68.7 / 66.1 84.3 / 84.4
RoBERTa (S+M+F) 84.5 81.6 / 77.2 62.1 88.0 / 88.5 61.9 / 61.9 67.9 / 66.2 86.2 / 86.5
RoBERTa (All) 84.7 85.9 / 82.1 80.6 88.4 / 88.5 62.2 / 61.9 67.4 / 65.6 86.3 / 86.7

Table 4: Model Performance on NLI stress tests (tuned on their respective dev. sets). All=S+M+F+ANLI.
AT=‘Antonym’; ‘NR’=Numerical Reasoning; ‘LN’=Length; ‘NG’=Negation; ‘WO’=Word Overlap; ‘SE’=Spell
Error. Previous models refers to the Naik et al. (2018) implementation of Conneau et al. (2017, InferSent) for the
Stress Tests, and to the Gururangan et al. (2018) implementation of Gong et al. (2018, DIIN) for SNLI-Hard.

Training Data A1 A2 A3 S M-m/mm

SMD1+SMD2 45.1 26.1 27.1 92.5 89.8/89.7
SMD1+A 72.6 42.9 42.0 92.3 90.3/89.6

SM 48.0 24.8 31.1 93.2 90.8/90.6
SMD3+A 73.3 42.4 40.5 93.3 90.8/90.7

Table 5: RoBERTa performance on dev set with differ-
ent training data. S=SNLI, M=MNLI, A=A1+A2+A3.
‘SM’ refers to combined S and M training set. D1, D2,
D3 means down-sampling SM s.t. |SMD2|=|A| and
|SMD3|+|A|=|SM|. Therefore, training sizes are identi-
cal in every pair of rows.

the NLI stress tests (Naik et al., 2018) (see Ap-
pendix A for details). The results are in Table 4.
We observe that all our models outperform the mod-
els presented in original papers for these common
stress tests. The RoBERTa models perform best
on SNLI-Hard and achieve accuracy levels in the
high 80s on the ‘antonym’ (AT), ‘numerical rea-
soning’ (NR), ‘length’ (LN), ‘spelling error’(SE)
sub-datasets, and show marked improvement on
both ‘negation’ (NG), and ‘word overlap’ (WO).
Training on ANLI appears to be particularly useful
for the AT, NR, NG and WO stress tests.

4.3 Hypothesis-only results

For SNLI and MNLI, concerns have been raised
about the propensity of models to pick up on spuri-
ous artifacts that are present just in the hypotheses
(Gururangan et al., 2018; Poliak et al., 2018). Here,
we compare full models to models trained only
on the hypothesis (marked H). Table 6 reports re-
sults on ANLI, as well as on SNLI and MNLI. The
table shows that hypothesis-only models perform
poorly on ANLI5, and obtain good performance
on SNLI and MNLI. Hypothesis-only performance

5Obviously, without manual intervention, some bias re-
mains in how people phrase hypotheses—e.g., contradiction
might have more negation—which explains why hypothesis-
only performs slightly above chance when trained on ANLI.

Training Data A1 A2 A3 S M-m/mm

ALL 73.8 48.9 44.4 92.6 91.0/90.6
S+M 47.6 25.4 22.1 92.6 90.8/90.6
ANLI-Only 71.3 43.3 43.0 83.5 86.3/86.5

ALLH 49.7 46.3 42.8 71.4 60.2/59.8
S+MH 33.1 29.4 32.2 71.8 62.0/62.0
ANLI-OnlyH 51.0 42.6 41.5 47.0 51.9/54.5

Table 6: Performance of RoBERTa with different
data combinations. ALL=S,M,F,ANLI. Hypothesis-
only models are marked H where they are trained and
tested with only hypothesis texts.

decreases over rounds for ANLI.
We observe that in rounds 2 and 3, RoBERTa is

not much better than hypothesis-only. This could
mean two things: either the test data is very diffi-
cult, or the training data is not good. To rule out the
latter, we trained only on ANLI (∼163k training
examples): RoBERTa matches BERT when trained
on the much larger, fully in-domain SNLI+MNLI
combined dataset (943k training examples) on
MNLI, with both getting ∼86 (the third row in
Table 6). Hence, this shows that the test sets are so
difficult that state-of-the-art models cannot outper-
form a hypothesis-only prior.

5 Linguistic analysis

We explore the types of inferences that fooled mod-
els by manually annotating 500 examples from
each round’s development set. A dynamically
evolving dataset offers the unique opportunity to
track how model error rates change over time.
Since each round’s development set contains only
verified examples, we can investigate two interest-
ing questions: which types of inference do writers
employ to fool the models, and are base models dif-
ferentially sensitive to different types of reasoning?

The results are summarized in Table 7. We de-
vised an inference ontology containing six types of
inference: Numerical & Quantitative (i.e., reason-



Round Numerical & Quant. Reference & Names Standard Lexical Tricky Reasoning & Facts Quality

A1 38% 13% 18% 13% 22% 53% 4%
A2 32% 20% 21% 21% 20% 59% 3%
A3 10% 18% 27% 27% 27% 63% 3%

Average 27% 17% 22% 22% 23% 58% 3%

Table 7: Analysis of 500 development set examples per round and on average.

ing about cardinal and ordinal numbers, inferring
dates and ages from numbers, etc.), Reference &
Names (coreferences between pronouns and forms
of proper names, knowing facts about name gender,
etc.), Standard Inferences (conjunctions, negations,
cause-and-effect, comparatives and superlatives
etc.), Lexical Inference (inferences made possible
by lexical information about synonyms, antonyms,
etc.), Tricky Inferences (wordplay, linguistic strate-
gies such as syntactic transformations/reorderings,
or inferring writer intentions from contexts), and
reasoning from outside knowledge or additional
facts (e.g., “You can’t reach the sea directly from
Rwanda”). The quality of annotations was also
tracked; if a pair was ambiguous or a label debat-
able (from the expert annotator’s perspective), it
was flagged. Quality issues were rare at 3-4% per
round. Any one example can have multiple types,
and every example had at least one tag.

We observe that both round 1 and 2 writers rely
heavily on numerical and quantitative reasoning
in over 30% of the development set—the percent-
age in A2 (32%) dropped roughly 6% from A1
(38%)—while round 3 writers use numerical or
quantitative reasoning for only 17%. The major-
ity of numerical reasoning types were references to
cardinal numbers that referred to dates and ages. In-
ferences predicated on references and names were
present in about 10% of rounds 1 & 3 development
sets, and reached a high of 20% in round 2, with
coreference featuring prominently. Standard infer-
ence types increased in prevalence as the rounds
increased, ranging from 18%–27%, as did ‘Lexi-
cal’ inferences (increasing from 13%–31%). The
percentage of sentences relying on reasoning and
outside facts remains roughly the same, in the mid-
50s, perhaps slightly increasing over the rounds.
For round 3, we observe that the model used to col-
lect it appears to be more susceptible to Standard,
Lexical, and Tricky inference types. This finding is
compatible with the idea that models trained on ad-
versarial data perform better, since annotators seem
to have been encouraged to devise more creative
examples containing harder types of inference in

order to stump them. Further analysis is provided
in Appendix B.

6 Related work

Bias in datasets Machine learning methods are
well-known to pick up on spurious statistical pat-
terns. For instance, in the first visual question an-
swering dataset (Antol et al., 2015), biases like
“2” being the correct answer to 39% of the ques-
tions starting with “how many” allowed learning
algorithms to perform well while ignoring the vi-
sual modality altogether (Jabri et al., 2016; Goyal
et al., 2017). In NLI, Gururangan et al. (2018), Po-
liak et al. (2018) and Tsuchiya (2018) showed that
hypothesis-only baselines often perform far better
than chance. NLI systems can often be broken
merely by performing simple lexical substitutions
(Glockner et al., 2018), and struggle with quanti-
fiers (Geiger et al., 2018) and certain superficial
syntactic properties (McCoy et al., 2019).

In question answering, Kaushik and Lipton
(2018) showed that question- and passage-only
models can perform surprisingly well, while Jia
and Liang (2017) added adversarially constructed
sentences to passages to cause a drastic drop in
performance. Many tasks do not actually require
sophisticated linguistic reasoning, as shown by the
surprisingly good performance of random encoders
(Wieting and Kiela, 2019). Similar observations
were made in machine translation (Belinkov and
Bisk, 2017) and dialogue (Sankar et al., 2019). Ma-
chine learning also has a tendency to overfit on
static targets, even if that does not happen delib-
erately (Recht et al., 2018). In short, the field is
rife with dataset bias and papers trying to address
this important problem. This work presents a po-
tential solution: if such biases exist, they will allow
humans to fool the models, resulting in valuable
training examples until the bias is mitigated.

Dynamic datasets. Bras et al. (2020) proposed
AFLite, an approach for avoiding spurious biases
through adversarial filtering, which is a model-
in-the-loop approach that iteratively probes and
improves models. Kaushik et al. (2019) offer a



causal account of spurious patterns, and counterfac-
tually augment NLI datasets by editing examples
to break the model. That approach is human-in-
the-loop, using humans to find problems with one
single model. In this work, we employ both hu-
man and model-based strategies iteratively, in a
form of human-and-model-in-the-loop training, to
create completely new examples, in a potentially
never-ending loop (Mitchell et al., 2018).

Human-and-model-in-the-loop training is not a
new idea. Mechanical Turker Descent proposes a
gamified environment for the collaborative training
of grounded language learning agents over multi-
ple rounds (Yang et al., 2017). The “Build it Break
it Fix it” strategy in the security domain (Ruef
et al., 2016) has been adapted to NLP (Ettinger
et al., 2017) as well as dialogue safety (Dinan et al.,
2019). The QApedia framework (Kratzwald and
Feuerriegel, 2019) continuously refines and up-
dates its content repository using humans in the
loop, while human feedback loops have been used
to improve image captioning systems (Ling and
Fidler, 2017). Wallace et al. (2019) leverage trivia
experts to create a model-driven adversarial ques-
tion writing procedure and generate a small set of
challenge questions that QA-models fail on. Re-
latedly, Lan et al. (2017) propose a method for
continuously growing a dataset of paraphrases.

There has been a flurry of work in constructing
datasets with an adversarial component, such as
Swag (Zellers et al., 2018) and HellaSwag (Zellers
et al., 2019), CODAH (Chen et al., 2019), Ad-
versarial SQuAD (Jia and Liang, 2017), Lambada
(Paperno et al., 2016) and others. Our dataset is not
to be confused with abductive NLI (Bhagavatula
et al., 2019), which calls itself αNLI, or ART.

7 Discussion & Conclusion
In this work, we used a human-and-model-in-the-
loop training method to collect a new benchmark
for natural language understanding. The bench-
mark is designed to be challenging to current state-
of-the-art models. Annotators were employed to
act as adversaries, and encouraged to find vulner-
abilities that fool the model into misclassifying,
but that another person would correctly classify.
We found that non-expert annotators, in this gam-
ified setting and with appropriate incentives, are
remarkably creative at finding and exploiting weak-
nesses. We collected three rounds, and as the
rounds progressed, the models became more ro-
bust and the test sets for each round became more

difficult. Training on this new data yielded the state
of the art on existing NLI benchmarks.

The ANLI benchmark presents a new challenge
to the community. It was carefully constructed
to mitigate issues with previous datasets, and was
designed from first principles to last longer. The
dataset also presents many opportunities for fur-
ther study. For instance, we collected annotator-
provided explanations for each example that the
model got wrong. We provided inference labels for
the development set, opening up possibilities for
interesting more fine-grained studies of NLI model
performance. While we verified the development
and test examples, we did not verify the correct-
ness of each training example, which means there
is probably some room for improvement there.

A concern might be that the static approach is
probably cheaper, since dynamic adversarial data
collection requires a verification step to ensure ex-
amples are correct. However, verifying examples is
probably also a good idea in the static case, and ad-
versarially collected examples can still prove useful
even if they didn’t fool the model and weren’t veri-
fied. Moreover, annotators were better incentivized
to do a good job in the adversarial setting. Our
finding that adversarial data is more data-efficient
corroborates this theory. Future work could ex-
plore a detailed cost and time trade-off between
adversarial and static collection.

It is important to note that our approach is model-
agnostic. HAMLET was applied against an ensem-
ble of models in rounds 2 and 3, and it would be
straightforward to put more diverse ensembles in
the loop to examine what happens when annotators
are confronted with a wider variety of architectures.

The proposed procedure can be extended to other
classification tasks, as well as to ranking with hard
negatives either generated (by adversarial models)
or retrieved and verified by humans. It is less clear
how the method can be applied in generative cases.

Adversarial NLI is meant to be a challenge for
measuring NLU progress, even for as yet undis-
covered models and architectures. Luckily, if the
benchmark does turn out to saturate quickly, we
will always be able to collect a new round.
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Emily M Bender. 2017. Towards linguistically gen-
eralizable nlp systems: A workshop and shared task.
arXiv preprint arXiv:1711.01505.

Atticus Geiger, Ignacio Cases, Lauri Karttunen,
and Christopher Potts. 2018. Stress-testing neu-
ral models of natural language inference with
multiply-quantified sentences. arXiv preprint
arXiv:1810.13033.

Mor Geva, Yoav Goldberg, and Jonathan Berant. 2019.
Are we modeling the task or the annotator? an inves-
tigation of annotator bias in natural language under-
standing datasets. arXiv preprint arXiv:1908.07898.

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking nli systems with sentences that re-
quire simple lexical inferences. In Proceedings of
ACL.

Yichen Gong, Heng Luo, and Jian Zhang. 2018. Nat-
ural language inference over interaction space. In
6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2017. Making the
v in vqa matter: Elevating the role of image under-
standing in visual question answering. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6904–6913.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel R Bowman, and
Noah A Smith. 2018. Annotation artifacts in natural
language inference data. In Proceedings of NAACL.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2015. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. arXiv preprint arXiv:1511.02301.

Allan Jabri, Armand Joulin, and Laurens Van
Der Maaten. 2016. Revisiting visual question an-
swering baselines. In European conference on com-
puter vision, pages 727–739. Springer.



Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of EMNLP.

Divyansh Kaushik, Eduard Hovy, and Zachary C Lip-
ton. 2019. Learning the difference that makes
a difference with counterfactually-augmented data.
arXiv preprint arXiv:1909.12434.

Divyansh Kaushik and Zachary C Lipton. 2018.
How much reading does reading comprehension re-
quire? a critical investigation of popular bench-
marks. arXiv preprint arXiv:1808.04926.

Bernhard Kratzwald and Stefan Feuerriegel. 2019.
Learning from on-line user feedback in neural ques-
tion answering on the web. In The World Wide Web
Conference, pages 906–916. ACM.

Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. 2017.
A continuously growing dataset of sentential para-
phrases. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1224–1234, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.
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A Performance on challenge datasets

Recently, several hard test sets have been made
available for revealing the biases NLI models learn
from their training datasets (Nie and Bansal, 2017;
McCoy et al., 2019; Gururangan et al., 2018; Naik
et al., 2018). We examine model performance on
two of these: the SNLI-Hard (Gururangan et al.,
2018) test set, which consists of examples that
hypothesis-only models label incorrectly, and the
NLI stress tests (Naik et al., 2018), in which sen-
tences containing antonyms pairs, negations, high
word overlap, i.a., are heuristically constructed. We
test our models on these stress tests after tuning on
each test’s respective development set to account
for potential domain mismatches. For comparison,
we also report results from the original papers: for
SNLI-Hard from Gururangan et al.’s implementa-
tion of the hierarchical tensor-based Densely Inter-
active Inference Network (Gong et al., 2018, DIIN)
on MNLI, and for the NLI stress tests, Naik et al.’s
implementation of InferSent (Conneau et al., 2017)
trained on SNLI.

B Further linguistic analysis

We compare the incidence of linguistic phenomena
in ANLI with extant popular NLI datasets to get an
idea of what our dataset contains. We observe that
FEVER and SNLI datasets generally contain many
fewer hard linguistic phenomena than MultiNLI
and ANLI (see Table 8).

ANLI and MultiNLI have roughly the same per-
centage of hypotheses that exceeding twenty words
in length, and/or contain negation (e.g., ‘never’,
’no’), tokens of ‘or’, and modals (e.g., ‘must’,
‘can’). MultiNLI hypotheses generally contains
more pronouns, quantifiers (e.g., ‘many’, ‘every’),
WH-words (e.g., ‘who’, ‘why’), and tokens of ‘and’
than do their ANLI counterparts—although A3
reaches nearly the same percentage as MultiNLI
for negation, and modals. However, ANLI contains
more cardinal numerals and time terms (such as
‘before’, ‘month’, and ‘tomorrow’) than MultiNLI.
These differences might be due to the fact that the
two datasets are constructed from different gen-
res of text. Since A1 and A2 contexts are con-
structed from a single Wikipedia data source (i.e.,
HotPotQA data), and most Wikipedia articles in-
clude dates in the first line, annotators appear to pre-
fer constructing hypotheses that highlight numerals
and time terms, leading to their high incidence.

Focusing on ANLI more specifically, A1 has

roughly the same incidence of most tags as A2 (i.e.,
within 2% of each other), which, again, accords
with the fact that we used the same Wikipedia data
source for A1 and A2 contexts. A3, however, has
the highest incidence of every tag (except for num-
bers and time) in the ANLI dataset. This could be
due to our sampling of A3 contexts from a wider
range of genres, which likely affected how anno-
tators chose to construct A3 hypotheses; this idea
is supported by the fact that A3 contexts differ in
tag percentage from A1 and A2 contexts as well.
The higher incidence of all tags in A3 is also inter-
esting, because it could be taken as providing yet
another piece of evidence that our HAMLET data
collection procedure generates increasingly more
difficult data as rounds progress.

C Dataset properties

Table 9 shows the label distribution. Figure 4 shows
a histogram of the number of tries per good veri-
fied example across for the three different rounds.
Figure 5 shows the time taken per good verified ex-
ample. Figure 6 shows a histogram of the number
of tokens for contexts and hypotheses across three
rounds. Figure 7 shows the proportion of different
types of collected examples across three rounds.

Inter-annotator agreement Table 10 reports the
inter-annotator agreement for verifiers on the dev
and test sets. For reference, the Fleiss’ kappa of
FEVER (Thorne et al., 2018) is 0.68 and of SNLI
(Bowman et al., 2015) is 0.70. Table 11 shows
the percentage of agreement of verifiers with the
intended author label.

D Examples

We include more examples of collected data in
Table 12.

E User interface

Examples of the user interface are shown in Figures
8, 9 and 10.
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Figure 6: Histogram of the number of tokens in contexts and hypotheses across three rounds.

Figure 7: Proportion across three rounds. A=Examples that model got right, B1=Examples that model got wrong
and the first two verifiers agreed with the writer, B2=Examples that model got wrong and only one of the first two
verifiers agreed with the writer and a third verifier also agreed with the writer, C=Examples where two verifiers
agreed with each other and overruled the writer, D=Examples for which there is no agreement among verifiers. A
and C are added only to training set. B1 and B2 are added to training, dev, or test set. D was discarded.



Figure 8: UI for Creation. (Provide the context to annotator)

Figure 9: Collection UI for Creation. (Give the model feedback to annotator)

Figure 10: UI for Verification Task.



Other Datasets ANLI
SNLI MNLIm MNLImm F A1 A2 A3

Tag % c % h % c % h % c % h % claim % c % h % c % h % c % h

Negation < 1 1 14 16 12 16 3 2 6 3 10 22 14
‘and’ 30 7 41 15 42 18 6 85 12 88 11 75 11
‘or’ 1 < 1 7 2 8 2 < 1 6 0 6 < 1 15 1
Numbers 10 4 16 8 15 9 9 72 30 73 27 42 15
Time 12 4 15 7 16 9 6 57 22 56 19 49 11
WH-words 3 1 16 7 18 9 2 28 5 27 5 35 5
Pronouns 11 7 37 20 39 24 2 30 9 28 7 60 13
Quantifiers 5 3 21 16 22 17 3 14 10 17 12 38 12
Modals < 1 < 1 17 13 18 14 < 1 2 3 3 2 35 14
>20 words 14 < 1 37 2 39 3 < 1 100 5 100 4 98 4

# exs 10k 10k 10k 9999 1k 1k 1200

Table 8: Percentage of development set sentences with tags in several datasets: AdvNLI, SNLI, MuliNLI and
FEVER. ‘%c’ refers to percentage in contexts, and‘%h’ refers to percentage in hypotheses. Bolded values label
linguistic phenomena that have higher incidence in adversarially created hypotheses than in hypotheses from other
NLI datasets, and italicized values have roughly the same (within 5%) incidence.

Entailment / Neutral / Contradiction
Round Train Dev Test

A1 5,371 / 7,052 / 4,523 334 / 333 / 333 334 / 333 / 333
A2 14,448 / 20,959 / 10,053 334 / 333 / 333 334 / 333 / 333
A3 32,292 / 40,778 / 27,389 402 / 402 / 396 402 / 402 / 396

ANLI 52,111 / 68,789 / 41,965 1,070 / 1,068 / 1,062 1,070 / 1,068 /1,062

Table 9: Label distribution in splits across rounds.

Round Dev + Test Dev Test

A1 0.7210 0.7020 0.7400
A2 0.6910 0.7100 0.6720
A3 0.6786 0.6739 0.6832

Table 10: Inter-annotator agreement (Fleiss’ kappa) for
writers and the first two verifiers.

SNLI MNLI A1 A2 A3

85.8 85.2 86.1 84.6 83.9

Table 11: Percentage of agreement of verifiers (“valida-
tors” for SNLI and MNLI) with the author label.



Context Hypothesis Reason Round Labels Annotationsorig. pred. valid.

Eduard Schulte (4 January 1891 in Düsseldorf
6 January 1966 in Zürich) was a prominent Ger-
man industrialist. He was one of the first to
warn the Allies and tell the world of the Holo-
caust and systematic exterminations of Jews in
Nazi Germany occupied Europe.

Eduard Schulte is the
only person to warn
the Allies of the atroc-
ities of the Nazis.

The context states that he is not
the only person to warn the Allies
about the atrocities committed by
the Nazis.

A1
(Wiki)

C N C C Tricky Presupposi-
tion, Numerical Or-
dinal

Kota Ramakrishna Karanth (born May 1, 1894)
was an Indian lawyer and politician who served
as the Minister of Land Revenue for the Madras
Presidency from March 1, 1946 to March 23,
1947. He was the elder brother of noted Kan-
nada novelist K. Shivarama Karanth.

Kota Ramakrishna
Karanth has a brother
who was a novelist
and a politician

Although Kota Ramakrishna
Karanth’s brother is a novelist, we
do not know if the brother is also a
politician

A1
(Wiki)

N E N E N Standard Conjunc-
tion, Reasoning
Plausibility Likely,
Tricky Syntactic

The Macquarie University Hospital (abbrevi-
ated MUH) is a private teaching hospital. Mac-
quarie University Hospital, together with the
Faculty of Medicine and Health Science, Mac-
quarie University, formerly known as ASAM,
Australian School of Advanced Medicine, will
integrate the three essential components of an
academic health science centre: clinical care,
education and research.

The Macquarie Uni-
versity Hospital have
still not integrated the
three essential compo-
nents of an academic
health science centre:
clinical care, educa-
tion and research

the statement says that the univer-
sities are getting together but have
not integrated the systems yet

A1
(Wiki)

E C E E Tricky Presuppo-
sition, Standard
Negation

Bernardo Provenzano (31 January 1933 – 13
July 2016) was a member of the Sicilian Mafia
(“Cosa Nostra”) and was suspected of having
been the head of the Corleonesi, a Mafia faction
that originated in the town of Corleone, and de
facto “capo di tutti capi” (boss of all bosses) of
the entire Sicilian Mafia until his arrest in 2006.

It was never confirmed
that Bernardo Proven-
zano was the leader of
the Corleonesi.

Provenzano was only suspected as
the leader of the mafia. It wasn’t
confirmed.

A2
(Wiki)

E N E E Tricky Presuppo-
sition, Standard
Negation

HMAS “Lonsdale” is a former Royal Aus-
tralian Navy (RAN) training base that was lo-
cated at Beach Street, Port Melbourne , Victo-
ria, Australia. Originally named “Cerberus III”,
the Naval Reserve Base was commissioned as
HMAS “Lonsdale” on 1 August 1940 during the
Second World War.

Prior to being re-
named, Lonsdale
was located in Perth,
Australia.

A naval base cannot be moved -
based on the information in the sce-
nario, the base has always been lo-
cated in Victoria.

A2 C N C C Tricky Presuppo-
sition, Reasoning
Facts

Toolbox Murders is a 2004 horror film directed
by Tobe Hooper, and written by Jace Anderson
and Adam Gierasch. It is a remake of the 1978
film of the same name and was produced by the
same people behind the original. The film cen-
tralizes on the occupants of an apartment who
are stalked and murdered by a masked killer.

Toolbox Murders is
both 41 years old and
15 years old.

Both films are named Toolbox Mur-
ders one was made in 1978, one in
2004. Since it is 2019 that would
make the first 41 years old and the
remake 15 years old.

A2
(Wiki)

E C E E Reasoning Facts,
Numerical Cardi-
nal Age, Tricky
Wordplay

A biker is critically ill in hospital after collid-
ing with a lamppost in Pete The incident hap-
pened at 1.50pm yesterday in Thorpe Road. The
23-year-old was riding a Lexmoto Arrow 125
when, for an unknown reason, he left the road
and collided with a lamppost. He was taken
to James Cook University Hospital, in Middles-
brough, where he remains in a critical condition.
Any witnesses to the collision are asked to call
Durham Police on 101, quoting incident number
288 of July 9.

The Lamppost was sta-
tionary.

Lampposts don’t typically move. A3
(News)

E N E E Reasoning Facts,
Standard

“We had to make a decision between making
payroll or paying the debt,” Melton said Mon-
day. “If we are unable to make payroll Oct. 19,
we will definitely be able to make it next week
Oct. 26 based on the nature of our sales taxes
coming in at the end of the month. However we
will have payroll the following week again on
Nov. 2 and we are not sure we will be able to
make that payroll because of the lack of revenue
that is coming in.”

The company will not
be able to make pay-
roll on October 19th

and will instead dis-
pense it on October
26th

It’s not definitely correct nor def-
initely incorrect because the com-
pany said “if” they can’t make it
on the 19th they will do it on
the 26th , they didn’t definitely say
they won’t make it on the 19th

A3
(News)

N E N C N Reasoning Plau-
sibility Likely,
Tricky Presupposi-
tion

The Survey: Greg was answering questions. He
had been asked to take a survey about his liv-
ing arrangements. He gave all the information
he felt comfortable sharing. Greg hoped the sur-
vey would improve things around his apartment.
THe complex had really gone downhill lately.

He gave some of the
information he felt
comfortable sharing.

Greg gave all of the information he
felt comfortable, not some. It was
difficult for the system because it
couldn’t tell a significant difference
between to word “some” and “all.”

A3 (Fic-
tion)

C E C C Tricky (Scalar Im-
plicature)

Table 12: Extra examples from development sets. ‘An’ refers to round number, ‘orig.’ is the original annotator’s
gold label, ‘pred.’ is the model prediction, ‘valid.’ is the validator labels, ‘reason’ was provided by the original
annotator, ‘Annotations’ is the tags determined by linguist expert annotator.


