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Quantum Tomography of Negative Energy States in the
Vacuum

Introduction

Future aerospace vehicles could have an advanced propulsion system that uses
negative quantum vacuum energy to modify the spacetime geometry in the immediate
vichity surrounding the vehicle in order to induce faster-than-light motion via
traversable wormholes or warp drives, or even levitation via antigravity [1, 2]. These
exotic propulsion concepts are well-known in mainstream genera relativity and
quantum field theory research. The notion of a physical state with negative eneray is
not familiar in the ream of classical physics. However, i s not rare in quantum field
theory to have quantum states with negative energy density or a negative energy flux.
Even for a quantum scalar field in the flat Minkowski spacetime, it can be proved that
the existence of quantum states with negative energy density is inevitable [3].
Although all known forms of classical matter have non-negative energy density, t is not
50 in quantum fied theory. A general quantum state can be a superposition of particlenumber eigenstates and may have a negative expectation value of energy density in
certain spacetime regions due to quantum coherence effects [3]. These considerations
remain true even for quantum fields in a curved spacetime where the effects of
gravitational fields, or equivalently, accelerations, can be observed due to the mass of
astronomical bodies or the motions of astronomical bodes.
There are two key examples of specially prepared quantum vacuum states that areknown to produce small amounts of negative energy density in the laboratory. These
are the well-known Casimir effect and the squeezed vacuum states of the
electromagnetic fied. The former is a static quantum vacuum effect while the latter is
a time-domain quantum vacuum effect. There are several other examples of special
quantum vacuum or particle states that produce negative energy density, but they are
beyond the scope of this report because they remain mathematical curiosities or are not
practicable to implement in the laboratory in the foreseeable future.
We already make small amounts of negative energy in the laboratory via the Casimir
effect and squeezed electromagnetic vacuum states, but we do not yet know ifwe can
access larger amounts for extended periods of time over extended spatial distributions
for the purpose of modifying spacetime for aerospace propulsion applications. It will be
necessary to first explore the quantum nature of the Casimir effect and squeezed
electromagnetic vacuum states to determine whether we can measure and spatially
map their negative energy density. This is a necessary frst step to take before
beginning any study on producing large quantities of negative energy because we will
first need to know how to measure and spatially map negative energy in order to
properly control it after producing it. This is the motivation for this report.

We need to firm up our understanding of how lab detectors will respond to negative
energy in situ. A first step in thi direction was already taken by Hansen et al. (4] in
2001 for the time-domain negative energy pulses in squeezed electromagnetic vacuum
states, and more recently Marecki (5, 6] generalized the analysis of the output of
balanced homodyne detectors (BHDs) for the case of static negative energy states
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inside Casimir cavities. The most important feature of these devices is their abilty to
‘quantify the quantum vacuum fluctuations of the electric field because the output of
BHDs provides information on the one- and two-point functions of arbitrary states of
‘quantum fields. Marecki computed the two-point function and the associated spectral
density for the ground state of the quantum electric field in Casimir geometries, and
predicts a position- and frequency-dependent pattern of BHD responses if a device of
this type is placed inside a Casimir cavity. The proposed device allows for the direct
detection of quantum vacuum fluctuations and provides a spatial mapping of the
negative energy contained inside the cavity, which will be summarized in this report.

2
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REVIEW OF NEGATIVE (or SUB-VACUUM) ENERGY

Overview
“The implementation of faster-than-light (FTL) interstellar travel via traversable
wormholes or warp drives or other antigravity forces for propulsion, generally requires
the engineering of spacetime into very specialized local geometries surrounding the
immediate vicinity of the aerospace vehicle undergoing this type of motion. The
analysis of these via the general relativistic field equation plus the resultant source
matter equations of state demonstrates that such geometries require the use of
“exotic” matter in order to produce the requisite FTL or antigravity spacetime
modification. Exotic matter is generally defined by general relativity physics to be
matter that possesses (renormalized) negative energy density (sometimes negative
stress-tension = outward pressure, a.k.a. gravitational repulsion or antigravity), and
this is a very misunderstood and misapplied term by the non-general relativity
community. We clear up this misconception by defining what negative energy is, where
it can be found in nature, and we also review the two primary experimental concepts
that are known to produce negative energy in the laboratory. Also, it has been claimed
that FTL and antigravity spacetimes are not plausible because exotic matter violates the
general relativistic energy conditions. However, it has been shown that this is a
spurious issue. The identification, magnitude, and production of exotic matter is seen
to be a key technical challenge, however. FTL and antigravity spacetimes also possess
features that challenge the notions of causality and there are alleged constraints placed
upon them by quantum effects. Reference [1] reviews and summarizes these issues
with an assessment on the present state of their resolution.

What exactly is “exotic” matter? In classical physics the energy density of all observed
forms of matter (fields) is non-negative. What is exotic about the type of matter that
must be used to produce traversable wormhole, warp drive, or antigravity spacetimes is
that it must have negative energy density and/or negative flux [7]. The energy density
iis “negative” in the sense that the configuration of matter fields we must deploy to
produce a traversable wormhole, warp drive, or antigravity effect must have an energy
density, pe (= pc?, where p is the rest-mass density), that is less than or equal to its
pressures/tensions, pi [8, 91." In many cases, these equations of state are also known
to possess an energy density that is algebraically negative, i.e., the energy density and
flux are less than zero. It is on the basis of these conditions that we call this material
property “exotic.” The condition for ordinary, classical (non-exotic) formsofmatter
that we are all familiar with in nature is that pz > pi and/or pe > 0. These conditions
represent two examples of what are variously called the “standard” energy conditions
which are computed from the trace of the matter stress-energy tensor’: Weak Energy
Condition (WEC: pe 0, p+ pr > 0), Null Energy Condition (NEC: pr +i > 0),
Dominant Energy Condition (DEC), and Strong Energy Condition (SEC). These energy
conditions forbid negative energy density between material objects to occur in nature,
but they are mere hypotheses. Hawking and Ellis [10] formulated the energy conditions
in order to establish a series of mathematical hypotheses governing the behavior of

* From tris point forward, al Lai eters (09. i,k = 1.3) that appear os indices on physic quantiles dencte
he usu 3-imensiona Sp0ce coordinates, x45, IER" he spatal components ofvectoror ensor Quanies.
The tres energy-momentum tensor 6 moiix GUOTLEY hak ancodes the dent and ux of energy anemomentum for an type of mater under Sur.
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collapsed-matter singularities in their study of cosmology and black hole physics. More
specifically, classical general relativity allows one to prove lots of general theorems
about the behavior of matter in gravitational fields.

However, real physical matter is not “reasonable” because the energy conditions are in
general violated by semiclassical quantum effects (occurring at order 1) [9]." More
specifically, quantum effects generically violate the average NEC (ANEC). Furthermore,
it was discovered in 1965 that quantum field theory has the remarkable property of
allowing states of matter containing local regions of negative energy density or negative
fluxes [3]. This violates the WEC, which postulates that the local energy density is non-
negative for all observers. And there are also general theorems of differential geometry
that guarantee that there must be a violation of ne, some, or all of the energy
conditions (meaning exotic matter is present) for all FTL and antigravity spacetimes.
However, all of the energy condition hypotheses have been experimentally tested in the
Izboratory and experimentally shown to be false ~ 25 years before their formulation
1)
In quantum field theory, negative energy is a manifestation of what is now called the
“sub-vacuum” levels of the quantum zero-point (or vacuum ground state) fluctuations
that correspond to any particular quantum field of matter under study. Hence, the
energy corresponding to sub-vacuum quantum fluctuations is now called “sub-vacuum
energy": sub-vacuum energy = negative energy. Further investigation into this technical
issue showed that violations of the energy conditions are widespread for all forms of
both “reasonable” classical and quantum matter 12-16]. Furthermore, Visser [9]
showed that all (generic) spacetime geometries violate all the energy conditions. So
the condition that pe > pi and/or pe > 0 must be obeyed by all forms of matter in nature
is spurious. Negative energy has been produced in the laboratory and this will be
discussed in the following sections.

Examples of Negative (Sub-Vacuum) Energy Found in Nature

The exatic (energy condition-violating) fields that are known to occur in nature are:
1. Static, radially-dependent electric or magnetic fields. These are borderline exotic,

if their tension were infinitesimally larger, for a given energy density [10, 17].
2. Squeezed quantum vacuum states: electromagnetic and other (non-Maxwellian)

quantum fields (8, 18].
3. Gravitationally squeezed electromagnetic vacuum fluctuations (19),
4. Casimir effect, i.e., the Casimir vacuum in fiat, curved, and topological spaces.

[20-28].
5. Other quantum fields/states/effects. In general, the local energy density in

quantum field theory can be negative due to quantum coherence effects [3].
Other examples that have been studied are Dirac field states: the superposition
of two single particle electron states and the superposition of two multi-glectron-
positron states [29, 30]. In the former (latter), the energy densities can be
negative when two single (multi-) particle states have the same number of

*Planck's reduced constant n = 1.055 + 10% 5.
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electrons (electrons and positrons) or when one state has one more electron
(electron-positron pair) than the other.

Cosmological inflation [9], cosmological particle production [9], classical scalar fields
[9], the conformal anomaly [9], and gravitational vacuum polarization [12-15] are
among many other examples that also violate the energy conditions. Since the laws of
quantum field theory place no strong restrictions on negative energies and fluxes, then
it might be possible to produce exotic phenomena such as faster-than-light travel [31-
33], traversable wormholes (8, 9, 34], violations of the second law of thermodynamics
(35, 36, and time machines (3, 34, 37]. There are several other exotic phenomena
made possible by the effects of negative energy, but they lie outside the scopeof this
report. In what follows, we consider only items 2 and 4 in the previous lst for the
purpose of this report due to their ready applicability and technical maturity. We wil
not examine the ather items in the ist because they are theoretical curiosities that
remain under study by investigators.

Basic Notions of the Quantum Field Theory of Light
Before going further, it will be helpful to briefly outline the basic notions and
terminology of the quantum field theory of light (i.., quantum optics) because the
content of this report focuses on those aspects.

Classically, light is electromagnetic radiation that can be pictured as waves flowing
through space at the speed of ight, ¢ (= 3.0 x 10° m/s). The waves are not waves of
anything substantive, but are in fact ripples in the state ofa field. These waves carry
energy, and each wave has a specific direction, frequency and polarization state. This
is called a “propagating mode of the electromagnetic field.” A simple model for this is
the electromagnetic oscillator. One complex-valued vector function u(x) called a
spatial-temporal mode comprises all classical wave aspects including polarization. The
simplest example of a spatial-temporal mode is a plane wave
uCx,r) = ugexp[i(kx—or)] of polarization vector uy, angular frequency o, and wave
vectork (definition: k”=aw/c?), where i isthe unit complex number, and x is the
space coordinate and1is the time coordinate.

This mode defines a framework in space and time that may be excited by the quantum
field “light.” The mode function quantifies the strength of one excitation in space and
time. Also, the mode function obeys the laws of classical waves given by Maxwell's
equations of electrodynamics. The choice of u(x) is made by the observer. The
observer singles out one mode, one quantum object from the rest of the world to make
a specific observation or measurement. This object turns out to be a harmonic
oscillator described by the annihilation operator d. A useful tool for modeling the
propagating mode of the electromagnetic field in quantum mechanics is the ideal
quantum mechanical harmonic oscillator: a hypothetical charged mass on a perfect
spring oscillating back and forth under the actionof the spring’s restoring force. The
operator d stands for the quantized amplitude with which u(r) can be excited. In
classical optics it would be just a complex number a of magnitude lal and phase
arg(a). The quantized amplitude d is neither predetermined nor given by the observer

5
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but depends on the state of u(x.f). This state exists even if literally nothing is in the
mode chosen by the observer. In this case, the light is just in the vacuum state.s
However, this “nothing” can indeed cause significant physical effects as will be
discussed in later sections.

To make all this more precise, we postulate that the electric field strength £ of the light
field is given by £'=u'(x,1)d+u(x,1)a" and that the amplitude operator is a bosonic”
annihilation operator that obeys the quantum mechanical commutation relation

[.6"]=1, where u(x1) is the complex conjugate of u(x.) and d" is the adjoint (or
conjugate) of @ called the creation operator. The hat symbol appearing over
quantities denotes that they are quantum operators (or observables). Another key
element of quantum-oscillator physics is the photon number operator # , which
accounts for the number of photons (quantized light particles) in the chosen u(x,1) and
is given by the quantum mechanical counterpart of a classical modulus-squared
amplitude: /i=d'a

Let us now introduce a pair of operators, ¢ and jb, called quadratures. They are

defined as §=2 "*(a' +a) and p=i2 "(d"~a), which can be inverted to provide the
additional useful definitions &=2"%(3+ip) and &' =2"*(4-ip). In optics § and j
correspond to the in-phase and the out-of-phase component of the electric field
amplitude of u(x,r) (with respect to a reference phase). The bosonic commutation
relation demonstrates that § and j are canonically conjugate observables, [4,5] =ih.
The quadratures § andj can be regarded as the position and the momentum of the
quantum electromagnetic oscillator. They do not appear in real space but in the phase
space spanned by the complex vibrational amplitude dof the quantum electromagnetic
oscillator, and they have nothing to do with the position and the momentum of a
photon. However, the canonical commutation relation entities us to treat g and j as
perfect examples of position- and momentum-like quantities in quantum optics. Finally,
we express the photon number operator 7 in terms of the quadratures ¢ and j and
obtain, using the bosonic commutation relation, the standard Hamiltonian (or total
energy) of the quantum harmonic (electromagnetic) oscillator with unit mass and
frequency:

A, =i+}

PLE apa
272

Hore we shay mmby vacuum” simply “no gh” an nok an evacuned systemBion of son. refers t quantum poco chk ave nage quantum so.Ioma mahoics, th vacuum 5 dined 105 5 stateof 7 (or S05] particles andsdanced by the
quantum sate eigenvector 0). By detintin & “annivates” te vacuum sae: 10) =0
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where the first and second terms In the second line are the kinetic and potential
energies of the oscillator, respectively. The additional 1/2 appearing in the first line of
Eq. (1) is called the vacuum zero-point energy for the reason to be explained in the
next section. The first ine of Eq. (1) is more commonly expressed in units of energy
(Joules) in quantum mechanics, which is obtained simply by multiplying the right-hand
side by the photon energy Ae 50 that Hu, =hw(ii+}).

Itis beyond the scope of this report to elaborate further on the entire subject of the
quantum optics. The reader should consult Reference [38] for more information.

Basic Notions on the Originof the Quantum Vacuum Zero-Point Fluctuations

Here we discuss the basic notionsofthe quantum vacuum zero-point fluctuations
(2PF), which is an important feature in quantum optics. The origin of the ZPF is
attributed to the Heisenberg Uncertainty Principle. According to this principle, § and
jare any two conjugate observables that we are Interested in measuring, and they
obey the commutation relation already shown in the previous section. Their
corresponding uncertainty relation is AjAp> W2, where Ag is the variance (a.k.a.
uncertainty) of observable § and Ap is that of the conjugate observable j. This
relation states that if one measures observable § with very high precision (i.e., its

uncertainty Ag is very small), then a simultaneous measurement of observable j will

be less precise (i.e, its uncertainty Ap is very large), and vice versa. In other words,
itis not possible to simultaneously measure two conjugate observable quantities with
infinite precision.
“This minimum uncertainty is not due to any correctable flaws in measurement, but
rather reflects the intrinsic fuzziness in the quantum nature of energy and mater.
Substantial theoretical and experimental work has shown that in many quantum
systems the limits to measurement precision is imposed by the quantum vacuum ZPF
‘embodied within the uncertainty principle. Nowadays we rather see the Heisenberg
Uncertainty Principle as a necessary consequence, and therefore, a derived resultof the
wave nature of quantum phenomena. The Uncertainties are just a consequence of the
Fourier nature of conjugate pairs of quantities (observables). For example, the two
Fourier-wave-conjugates time and frequency become thepairof quantum-particle
conjugates time and energy and the two Fourier-wave-conjugates displacement and
wave number become the pair of quantum-particle conjugates position and momentum.

The Heisenberg Uncertainty Principle dictates that a quantized electromagnetic
oscillator (a.k.a. a photon state) can never come entirely to rest, since that would be a
state of exactly zero energy, whichi forbidden by the commutation relation given in
the previous section. Instead, every mode of the field has /w/2 as its average minimum
energy in the vacuum, and this is called the zero-point energy (ZPE).** This ZPE term
is added to the classical blackbody spectral radiation energy density p(®)do [i.e., the
energy per unit volume of radiation in the frequency interval (®,® + dw)] (25):

hts the energy of single mage (or hon).
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plydo=-2|__ho___Rog,we | optiny1 2
he! ho a
=——coth| — ldo,awe“2k T

where ks is Boltzmann's constant (1.3807 x 10-2 J/K) andTis the absolute
temperature. The factor outside the square brackets in the first line of Eq. (2) i the
density of mode (or photon) states (i.e., the number of states per unit frequencyinterval per unit volume); the first term inside the square brackets i the standard
Planck biackiody radiation energy per mode; and the second term inside the square
brackets is the quantum zero-point eneray per mode. Equation (2) is called the Zero-Point Planck (Z6P) spectral radiation energy density. Planck first added the ZPE term to
the classical yackogy special radiation energy density m 1913, although it wes
Einstein, Hopf, and Stern who actualy recognised the physical significance of this term
in 1913 [25]. Direct spectroscopic evidence for the reality of ZPE was provided byMuliken's boron monoxide special band experiments in 1924, several months before
Heisenberg first derived the ZPE for a harmonic oscillator from his new quantum matrixMechanics theory [39].
Following this line of reasoning, quantum physics predicts that all of space must be
led with quantum electromagneic ZPF creating a universal sea of zéro- paint eneroy.
The other quantum forces of nature also have their own vacuum ZPF which Contributes
tothe universal sea of zero-point energy. But that s beyond the scope of this report.
Negative (Sub-Vacuum) Energy in Squeezed Light
Substantial theoretical and experimental work has shown that in many quantum
Systems the limits to measurement precision imposed by the quantury vacuum ZPF can
be breached by decreasing the noise in one observable (or measurable quantity) at the
expense of increasing the noise in the conjugate observable; at the same time the
Variations i the frst cbservabl, say the energy, are reduced below the ZPF such that
the eneroy becomes “negative. “Squeezing: s thus the contol of quantum
fluctuations and corresponding uncertainties, whereby one can squeeze/reduce theVariance of one (physically Important) abservable quanti provided the variance in the
(physically unimportant) conjugate variable is tretchec/increased. The squeezed
‘quantity possesses an unusually low variance, meaning less variance than would be
expected on the basis of the equipartition theorem. One can in principle exploit
Quantum squeezing to extract energy from one place In the ordinary vacuum a theSxpense of acumaating oxcess energy elsewnare (81
The squeezed state of the electromagnetic field is 2 primary exemple of a quantum field
that has negative energy density and negative energy fx. Suh a state became a
physical reality in the laboratory a result of the noninesr-optics technique of
“squeezing,” i.e., of moving some of the quantum-fluctuations of laser light out of the

5
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cas[ (1 c)] part of the beam and into thesin[ w(t - 2c] part (18, 40-4415% The
observable that gets squeezed will have is fluctuations reduced below the vacuum ZPF.
The act of squeezing transforms the phase space circular noise profile characteristic of
the vacuum into an ellipse, whose semimajor and semiminor axes are given by unequal
quadrature uncertainties (of the quantized electromagnetic oscillator operators). This
applies to coherent states In general, and the usual vacuum is also a coherent state
with eigenvalue zero. As this ellipse rotates about the origin with angular frequency ®,
these unequal quadrature uncertainties manifest themselves in the electromagnetic
field oscillator energy by periodic occurrences, which are separated by one quarter
cycle, of both smaller and larger fluctuations Compared to the unsqueezed vacuum.
We digress momentarily by noting that coherent states, also called Glauber states, are
the eigenstates of the annihilation operator d:

dlay=ala), @

which have well-defined amplitudes lal and phases arg(a) (recall the discussion in Sect.
118-1). They are called coherent states because light fields in these states are perfectly
coherent, and high-quality lasers generate such fields. This is an important reason why
high-quality laser light is an excellent tool for experimental quantum optics. Coherent
states come as close as quantum mechanics allows to wave-like states of the
electromagnetic oscillator. Because the wave aspects of ight are commonly regarded
as classical, coherent states are often called classical states. Furthermore, fields in
statistical mixtures of coherent states (such as thermal fields) are classical as well,
whereas any state that cannot be understood as an ensemble of coherent states is
called nonclassical. The experimental generation and application of nonclassical light
fields is the main subject of this report. Despite much recent progress, producing
nonclassical states of light is stil extremely challenging because they are easily
destroyed (reduced to classical) by any kind of losses. Furthermore, It turns out that
the vacuum is a coherent state as well because it satisfies Eq. (3) for a = 0. In other
words, the vacuum Is a zero-amplitude coherent state. With a litle algebra we see
directly from Eq. (3) that the mean (i.e., quantum expectation value of the) energy ofa
coherent state with unit frequency is

(Aa)=(ald a+5|a)
@)fof +1.

Equation (4) is the sum of the classical wave intensity lai? and the vacuum zero-point
energy 1/2. One simply multiples the right-hand side of Eq. (4) by fw to put (Fi,)
into units of energy.

42 denote the -axs direction of beam prepagaten

9
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Morris and Thorne [8] and Caves [45] point out that f one squeezes the vacuum, ie., if
one puts vacuum rather than laser light into the input port of a squeezing device, thenone gets at the output an electromagnetic field with weaker fluctuations and thus less
energy density than the vacuum at locations where cos® wl oc) =1 and
sin’ [a(t ~2/)] << 1; but with greater fluctuations and thus greater energy density
than the vacuum at locations where cos*[(r~c)] << Land sin’ [w(r- 2c) =1.
Since the vacuum is defined to have vanishing energy density, any region with less
energy density than the vacuum actually has a negative (renormalized) expectation
value for the energy density. Therefore, squeezed vacuum state consists of atraveling electromagnetic wave that oscillates back and forth between negative energy
density and positive energy density, but has positive time-averaged energy density.
In quantum optics the squeezed state is generated by the unitary squeezing operator

Sma 3(a-a)], ©

where & is a real number that parameterize the deviation of the variances Aj and Ap
fromtheir vacuumvalues and is called the squeezing parameter. From Eg. (5) we
obtain the squeezed vacuum state |o) = S[0). The squeezing operator SE) is simply
an evolution operator that describes the result ofthe nonlinear squeezing interaction

Hamiltonian Hl, =z(bd ~bd'). The squeezing parameter & contains the product of
the amplitude b, the coupling constant ¥, and the interaction time.

But this is not the entire story. Since we will be dealing with high-quality lasers in what
follows, we also need to know about another important quantum optics operator that
acts on coherent states. We introduce the unitary displacement operator
Di@)=exp(ed ~a’d). Dl) displaces the amplitude @ by the complex number o
according to '(c)@ Bla) =a+a. To show why D(a) has anything to do with coherent
states, we apply a negative displacement to [a). From the basic property of D(a), we
see that

abl) = D-)'(-a)aB-o]a)

=Di-o)(d-o)la) ©
=0.

Equation (6) equals zero because of the definition Eq. (3) of coherent states. This
result implies that (-a)|cx) =|0), which is the vacuum state. Therefore, coherent
states |) are displaced vacua |x)= B(@)|0).. This does not mean that coherent states

10
UNCLASSIFIED/ 4FOR-OFFIemt-uoe-onmr—



UNCLASSIFIED/ /FOR-OFH-GHMrGi-ONim

are physically similar to vacuum states, but instead they have only some quantum
noise properties in common. It is a weil known result in the quantum field theory of
ight that the vacuum wave function is a simple Gaussian function of the quadratures
(in either § or j representation), and thus coherent states are also Gaussian [38].
Furthermore, a proof of Heisenberg’s Uncertainty Principle in conjunction with the
application of $2) and Bie) on the quadrature variances and wave functions showed
that all minimum uncertainty states are displaced Gaussian states such that they have
displaced rescaled vacuum wave functions. Consequently, ail minimum uncertainty
states are displaced squeezed vacua (18, 38]

|w)=D($©)0). @

The squeezing interaction /1,, is realized by the degenerate parametric amplification of
the spatial-temporal mode. A crystal such 3s potassium titanyl phosphate (KTP) or
lithium niobate (LINbOs) is pumped by another laser beam with amplitude b and twice
the frequency of the spatial-temporal mode (with amplitude d) of interest. According to
H,,, the "8" photons (corresponding to b) of the pump beam are converted into pairs
of "A" signal photons (corresponding to d? and 4") with a probability that depends on
the coupling constant 1. The KTP or LiNbOs crystal acts like an electromagnetic swing,
and the pump modulates the oscillation of the “4” mode at twice its frequency. The
pump amplifies the signal parametrically much as a swing is amplified by changing the
effective length at twice the frequency of the swing. A classical swing relies on tiny
initial fluctuations (or “wobbles") that are in-phase with respect to the parametric
pump. In this way, the tiny fluctuations are amplified; the swing starts to oscillate. A
quantum swing like the degenerate parametric amplifier experiences at least the
vacuum fluctuations from the very beginning. Vacuum fluctuations that are in-phase
with respect to the pump are amplified, whereas out-of-phase fluctuations get de-
‘amplified or, in other words, squeezed.

A squeezed vacuum requires a pump for generation, and, hence, when produced it
carries energy. The nonlinear crystal KTP or LINbOs is a resonator that is shaped like a
cylinder with rounded silvered ends to reflect light. This resonator acts to produce a
secondary lower frequency light beam In which the pattern of photons is rearranged
into pairs. The squeezed light emerging from the resonator will contain pulses of
negative energy interspersed with pulses of positive energy. To quantify the amount of
squeezing energy we 1) apply S(2) to the quadratures and find that it scales their
eigenfunctions; 2) we then substitute ford its quadrature decomposition (given in
Sect. 118-1) and substitute thatresult into the scaled quadratures; and then 3) do
further algebra to derive how $(&) changes a: $'(£)aS(8) = acosh -a'sinh%. We
substitute ths last result into Eq. (1) and use Eq. (7) to calculate the quantum
expectation value in order to express the mean energy of a squeezed state, and obtain

ir § sets saveszed ond fp gets stretched.

1
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(|Age|W)=lof +4 +sinh’, (®)

Equation (8) really describes the mean photon number of a single mode ina squeezed
state, but one simply multiplies the right-hand side by fiw to get the mean energy

(A) =hofjof* +}+sinle) We see in Eq. (8) that there are three terms
contributing to the energy: the first term accounts forthe conerent energy given by.
la, the second term is the vacuum zero-point energy 1/2, and the third term
quantifies the fluctuation eneroy of squeezed states. The Contribution to this Squeezing
energy originally comes from the pump used to generate the squeezed light. Itis
Stored in the enhanced fluctuations of the anti-squeezed component. Because both the
squeezed and the anti-squeezed quadratures contribute to the second line in Eq. (1),even a squeezed vacuum carries ener.
However, Eq. (8) is not the final result because it only gives the mean energy of a
single mode in a squeezed state, while lasers and nonlinear crystal resonators produce
2 Very large number of modes. Equation (8) needs to be summed (integrated) over the
infinite number of possible modes; It must then be “renormalized” by sophisticated
mathematical techniques in order to get rid of the divergent (infinite) contribution from
the vacuum zero-point energy (a byproduct of taking an infinite sum of modes); and
then the result must be converted Into units of energy density by dividing it by an
appropriate volume element, because Einstein's general theory of relativity requires an
energy density (or pressure, both are in the same units) to induce spacetime bending.

The final result we seek is the energy density, pe-wya, given by Pfenning [46]:

Prag (202se nh cou cosas ~d0y+d)] rm), ©

where L* is the volume of a large box with sides of length L (i.e., we put the quantum
field in a box with periodic boundary conditions) and 8 is the phase of squeezing.

Equation (9) shows that p..ye falls below zero once every cycle when the condition
cosht>sinh is met. It turns out that this is always true for every nonzero value of &,
50PEsque becomes negative at some point in the cyce for 3 general squeezed vacuum
state. See Figure 1 for an illustration. Note in the figure that the blue troughs or
valleys are the negative energy pulses. On another note, when a quantum state is
close to a squeezed vacuum state, there will almost always be some negative energy
densities present.
Another way to generate negative energy via squeezed light would be to manufacture
extremely reliable light pulses containing precisely one, two three, tc., photons apiece
2nd combine them together to create squeezed states fo order. Superimposing manySuch sates could theoretically produce bursts of Intense negative energy. Photonic
crystal research has already demonstrated the feasibilty of using photonic crystal
Waveguides (mixing together the classical and quantum properties of optical materials)
to engineer light sources that produce beams containing precisely one, two, thee, etc.photons. See Reference [1] for more details and for the references cited therein.
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ENERGY SQUEEZED STATE
DENSITY

ALA POSITION

Figure 1. Tustrationof a Squeezed State of Light (courtesy of Liss Burnett

Negative (Sub-Vacuum) Energy in the Casimir Effect
The Casimir effect originates from the quantum electromagnetic vacuum ZPF. It is by
far the easiest and most well known way to generate (static) negative energy in the
lab. The Casimir effect that i familiar to most people is the force that is associated
with the quantum vacuum electromagnetic ZPF [47]. This Is an attractive force that
must exist between any two neutral (uncharged), parallel, flat, conducting surfaces
(e.q., metallic plates) in 2 vacuum. This force has been well measured and it can be
atirbuted to a minute imbalance In the vacuum electromagnetic ZPE density inside the
Cavity between the conducting surfaces versus the vacuum electromagnetic ZPE density
in the free-space region outside of the cavity [48-50]. See Figure 2 for a schematic of
the Casimir effect.

13
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Figure 2. Schematic of the Casimir Effect.
It turns out that there are many different types of Casimir effects found in quantum
field theory [20-22, 26-28, 51]. For example, if one introduces a single infinite plane
conductor into the Minkowski (flat spacetime) vacuum by bringing it adiabatically from
infinity so that whatever quantum fields are present suffer no excitation but remain in
their ground states, then the vacuum (electromagnetic) stresses induced by the

presence of the infinite plane conductor produces a Casimir effect. This result holds
equally well when two parallel plane conductors (with separation distance d) are
present, which gives rise to the familiar Cosimir effect inside a cavity. Note that in both
Cases, the spacetime manifold is made incomplete by the introduction of the plane
conductor boundary condition(s). The vacuum region put under stress by the presence
of the plane conductor(s) is called the Casimir vacuum. The generic expression for the

energy density of the Casimir effect isp. =—Ahcd™, where A=((D)Y8=’ in
spacetimes of arbitrary dimension D [20-22]. The appearance of the zeta-function G(D)
is characteristic of expressions for vacuum stress-energy tensors, T2, "In our

familiar 4-dimensional spacetime (D = 4) we have that A=7/720. To calculate T%
for a given quantum field is to calculate its associated Casimir effect.

We should also point out that the methods used to obtain the quantum vacuum

electromagnetic 77% between parallel plane conductors canalso be usedwhen the
conductors are not parallel but are joined together along a line of intersection. If the
conductors have curved surfaces instead, then one obtains results that are similar to
the case of intersecting conductors. These geometries have also been evaluated for the

1°!The Greek tensor indices (,v = 0..3) denote spacetime coordinates, x°. x’, such that x'_x’= space

coordinatesand «= time coordinate. Note in general that T™ mp, (field energy density).

14
UNCLASSIFIED//POR-OFFIGihirttible



UNCLASSIFIED/ HrOR-GRPIEI-USE-ONEY-

case of dielectric media. These particular cases will not be considered further since
there are technical subtleties involved that complicate the calculations and application
of the different approaches:

As a final note, negative energy can be created by a single moving reflecting
(conducting) surface (a.k.a. a moving mirror) via the dynamical Casimir effect. A
mirror moving with increasing acceleration generatesa flux of negative energy that
‘emanates from its surface and flows out into the space ahead of the mirror [23, 52].
This is essentially the simple case of an infinite plane conductor undergoing acceleration
perpendicular to its surface. If the acceleration varies with time, the conductor wil
generally emit or absorb photons (i.e., exchange energy with the vacuum), even
though itis neutral. This is an example of the well-known quantum phenomenon of
parametric excitation. The parameters of the quantum electromagnetic oscillators
(e.g., their frequency distribution function) change with time owing to the acceleration
of the mirror [53]. However, this effect is known to be exceedingly small, and it is not
the most effective way to produce negative energy for our purposes. We will not
consider this scheme any further.

QUANTUM OPTICAL HOMODYNE TOMOGRAPHY

Observing Negative Energy in the Lab

Negative energy should be observable in lab experiments. A generic, non-optical
scheme for detecting negative energy in experiments was recently reported by Davies
and Ottewil [54] who studied the response of switched particle detectors to static.
negative energy densities and negative energy fluxes. Their model is based on a free
(massless) scalar field in flat 4-dimensional Minkowski spacetime and utilized a simple
generalization of the standard monopole detector, which Is switched on and off to
Concentrate the measurements on periods of isolated negative energy density (or
negative energy flux). The detector model includes an explicit switching factor whereby
five different switching functions (based on data windowing theory) are defined and
evaluated.

In order to isolate the effects of negative energy, a comparison is made for the :
response of a detector switched on and off during a period of negative energy density
(or negative energy flux) and that switched on and off in the vacuum. The results shed
light on the response of matter (detectors) to pulses of negative energy of finite
duration, and they showed that negative energy should have the effect of enhancing
de-excitation (i.e., induce cooling)of the detector. This is the opposite of our
experience with detectors that undergo excitation when encountering “normal” matter
or energy, and isolated detectors placed in a vacuum naturally cool due to the usual
thermodynamic reasons. But Davies and Ottewill point out that the enhanced cooling
effect they discovered cannot be used to draw a thermodynamic conclusion because
their modeling was restricted to frst order in perturbation theory. It is not possible at
first order to determine whether the enhanced cooling effects are due to the small
violation of energy conservation expected in any process in which a general quantum
state collapses to an energy eigenstate, or whether they predict a systematic reduction
in the energyofthe detector which has serious thermodynamic implications. However,
Davies and Ottewil point out that their results are model dependent and they found for
their standard monopole detector model that there is not always a simple relationship
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between the strength of the negative energy density/flux and the behavior of thedetector
1s curious that Davies and Ottawil id not consider using quantum optical homodynetomography 25 3 tool a Est ther hypothesis, because this fs already a matureexpermental discipine. Tn wha follows we sutine the basics of quantum opticalHomodyne tomography and its application t GEtecting and messing negative eneray
density/flux states in squeezed light and in the Casimir effect.

Basic Notions of Quantum Optical Homodyne Tomography

Tomography, from the Greek word for slice, is a method to infer the shape of a hidden
object from its shadows (or projections) under various angles. Quantum tomography is
the application of this idea to quantum mechanics. In optical homodyne tomography,
the Wigner function or, more generally, the quantum state plays the role of the hidden
object. The observable “quantum shadows" are the quadrature distributions and aremeasured using homodyne detection. From hese distributions the Wigner function =reconstructed. Ses Figure 3 for an stration of quantum dptial homodyneLomoorpny. The verbal 2-cimensional pane seen 1 the four feous and iShow for lusraeve purposes ony.

ANa
SINS

So ee a ONESSEE PONT

a =
Figure 3. Hustration of Quantum Optica Homodyns Tomography (curiesy of Uf Leonhard),TOE nar fms (3G Saran oh he oD 1 oconruad I aren has Sha
(gridded plane formed by quadraturesq and p) from its experimentally measured projections (curve inVea meron! Pan, WheSte SES Proves of vrnorapy1VBnemaaofth Wigner GusrobsBI) orci.

Quantum tomography was developed for the simple reason that a fundamental featureofQuantum mechanics prevents ua from seeing physical abcts i ther ful quantumcompet. Thi i due to the mbnsic fuzziness In the quantum nature of energy and
matter according to the Heisenberg Uncertainty Principle, which prevents us from
simultaneously and precisely measuring the complementary features (e.g., position and
momentum or energy and time) comprising quantum states. For this reason we cannot
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directly observe quantum states, and so the true nature of an individual quantum
system is hidden. However, no principal obstacle exists to observing all complementary.
aspects in a series of distinct experiments on identically prepared quantum objects.

In the sections that follow, we briefly review the several parts that comprise the
tomography machinery, and then put the whole picture together to understand what
the entire process is. No effort will be made for completeness because the subject of
quantum tomography takes up volumes of books. The reader will be referred to the
key literature of importance.

Wigner Functions
In classical optics the state of an electromagnetic oscillator is perfectly described by the
statisticsof the classical amplitude a. The amplitude may be completely fixed (then
the fled is coherent), or a may fluctuate (then the fied is partially coherent or
incoherent). In classical optics as well as in classical mechanics, we can characterize
the statistics of the complex amplitude a. or, equivalently, the statistics of the
component position g and momentum p by introducing a phase space distribution called
the Wigner function, W(g.p).*** Wi) quantifies the probability of finding a particular
pair of g and p values in their simultaneous measurement. Knowing Wig.p) for a
particular quantum state that is under study, al statistical quantities of the
electromagnetic oscillator can be predicted by calculation. In this sense W(g.p)
describes the state in classical physics. The motivation for introducing the Wigner
function was the desire to find a quantum mechanical description similar to that in
classical statistical physics. However, in quantum mechanics Heisenberg's Uncertainty
Principle prevents one from observing position and momentum simultaneously and
precisely. In addition to this, we also cannot directly observe quantum states either.
Nevertheless, we are perfectly entitled to use the conceptof quantum states as If they
were existing entities. We use their properties to predict the statistics of observations.

tis well known that the quantum mechanical wave function depends exclusively on
either the position or the momentum and contains nevertheless al the information
about the quantum system under study. However, E. Wigner showed that itis possible
to define a formal quantum mechanical analog to the classical distribution function. He
showed that we could use Wig.p) as a quantum phase space distribution exclusively to
calculate observables in a classical-like fashion. Wigner discovered that Wig.) is a
real-valued function, but It is usually not just positive; t can also become negative.
“This is a very nonclassical behavior for a probabilty distribution. It is for this reason
that #¥(g,p) came to be called a quasiprobabilty distribution.

Wig,p) has several properties and mathematical postulates, but it turns out that just
one postulate is sufficient for the purposes of quantum tomography [38]. Using this
postulate, it is assumed that W(z,p) behaves like a joint probability distribution for ¢
and p without ever mentioning any simultaneous observation of position and
momentum. The reduced, or marginal, distributions |" W(g. pp or [7Wig.p)dg

4 Recall I Sect. 151 that th rea ard the imaginary arts f the camp ampikude can be regard a5 the
asian sn he omentum of the €ecromagnetc ascator.
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must give the position or the momentum distribution, respectively. Furthermore, if one
performs a phase shift 0 all complex amplitudes d are shifted in phase, meaning that
the components. and p rotate in the 2-dimensional phase space (4,7). A dassical
probability distribution for position and momentum values would rotate accordingly.
This fact leads to the postulate that the position probability distribution pr(g,0) after an
arbitrary phase shift 0 should be [38]

Pr(g.0)=(g|UO)pU"®)]q)
- : 10)=" W(gcos0psind.qsin0-+pcos0)dp.

wherej is the quantum density operator (or density matrix) which describes the
statistical (or most general) stateof a quantum system. The first line in Eq. (10) is the
quantum expectation value of the phase-shifted p, which simply gives the probability

distribution for the g-eigenstates to occur with probabilities p, (the elements of p).
This single formula joins Wig,p) with quantum mechanics. It ties W(g.p) to observable
quantities, and it links quantum states to observations.
It is beyond the scope of this report to repeat the entire mathematical development of
the explicit functional representations, identities, transformations and modifications of

W(g.p). The reader should consult Reference [38] for more information. However,
Figures 4 through 7 provide an example of what the experimentally reconstructed
Wigner function visually looks like from the quantum optical homodyne tomography of
the following cases of interest: a vacuum state, a coherent state, a squeezed vacuum
state, a single photon, and Schrodinger cat states. The Schrodinger cat states are 8
very interesting case study of unusual nonclassical states of light that have been
experimentally measured via quantum optical homodyne tomography.

0 he kar phase shifting aparatar Is (16) = ex), where sth phaton number operator and 1 the
shoesit ange, 1s acon an th ampitude2O00) = Gexp(-)
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‘We digress for the moment to explain what Schrédinger cat states are. Schrédinger's
cat is a famous illustration of the principle of superposition in quantum theory that wasproposed as a thought experiment by Erwin Schrodinger in 1935. Schrodinger’ cat
2

UNCLASSIFIEDARQReRR ChatSibir



UNCLASSIFIED//AFOR-OFFEGIi-UOE-ONEY

serves to demonstrate the apparent conflict of what quantum theory tells us is true
about the nature and behavior of matter on the quantum (atomic oF subatomic) level
compared with what we actually observe to be true about the nature and behavior of
matter on the macroscopic level.

Schrédinger’s thought experiment s as follows: One places a living cat into a steel
chamber along with a device containing a vial of hydrocyanic acid. There is also a very
small amount of a radioactive substance inside the chamber. If even a single atom of
the substance decays during the test period, then a relay mechanism will trip a
hammer, which will in turn break the vial and kill the cat.

The observer cannot know whether or not an atom of the radioactive substance has
decayed, and consequently, cannot know whether the vial has been broken, the
hydrocyanic acid released, and the cat killed. Since one cannot know, the cat is both
dead and alive in a superposition of quantum states according to the quantum
superposition principle. It is only when one breaks open the box and learns the
condition of the cat that the superposition is lost, and the cat becomes either dead or
alive. This situation is sometimes called quantum indeterminacy or the observer's
paradox: the act of observation or measurement itself affects the outcome, so that the
‘outcome as such does not exist unless, and until, the measurement is made. (That is,
there is no single outcome unless it is observed.)
According to the fundamental superposition principle of quantum mechanics, we are
entitled to think of quantum superpositions of coherent states. These are states that
contain simultaneously two coherent components (or states), one pointing in one.
direction in phase space and the other pointing in another direction. We label the
former component the "alive-cat” state and the latter component the “dead-cat state.”
The position wave function ¥ of such a state would be the superposition of two
coherent state (Gaussian) wave functions [38]:

1 2 1 2
Hy <ewp|(aa) [rew|-3(a+am) |. an

The normalization factor has been omitted in Eq. (11) because it is not important here.

Equation (11) shows that '¥ has two peaks, one at +qu (alive-cat state) and the other at

qo (dead-cat state) according to the superimposed coherent amplitudes. Also, Eq.
(11) has nothing to do with optical interference. When two fields interfere, their
amplitude may be enhanced or canceled, producing, for example, coherent states of
enhanced or zero amplitude (vacuum). The quantum superposition shown in Eq. (11)
still contains both coherent amplitudes qo. It is also much different from an

incoherent superposition of go, where the field has either the amplitude +o or the
amplitude go with certain probabilties. The quadrature amplitude of ¥ is +4o as well
25 —qu (simultaneously1), with a resolution given by the vacuum fluctuations.

This strange behavior of * being simultaneously at +p and —go turns out to be the best
representation of Schrédinger’s famous thought experiment in the quantum field theory
of light. Schradinger cat states are difficult to Gbserve in the optical domain because
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they are extremely vulnerable to quantum decoherence. Quantum decoherence is
caused by linear losses, and it is the main reason why the extremely strange quantum
phenomena allowed in quantum theory are very difficult to observe in practice.
However, the good news is that investigators have successfully controlled or
suppressed quantum decoherence to such a high degree that Schrédinger cat states
were experimentally observed and measured using optical homodyne tomography [S5,
56]. Figure 7 shows the experimentally reconstructed Wigner functions for two
Schrdinger cat states that have different amplitude values £go. The observed peaks at
qo seen in the figure are of small magnitude, so investigators euphemistically call
these "Schrodinger Kitten states.” As seen in the figure, the interference structure.
halfway between the peaks displays the quantum superposition of both amplitudes,
showing rapid oscillations with a frequency given by the distance 2lgal of the
superimposed amplitudes. Also seen in the figure is that the two reconstructed Wigner
functions become negative (l.c., negative probabilities”), indicating the nonclassical
behavior of Schrodinger cat/Kitten states.

Beam Splitters
A very important device that is used to demonstrate the quantum nature of ight is the
simple optical beam splitter. A large number of strange quantum effects have been
experimentally observed by splitting or recombining photons using a small cube of
glass. The beam splitter also serves as a theoretical model for other linear optical
devices such as interferometers, semitransparent mirrors, dielectric interfaces, wave:
guide couplers, and polarizers. The beam splitter model can also be used to account for
the effect of absorption, mode mismatch, and other linear losses.

An ideal beam splitter is a reversible, lossless device in which two incident beams of
light may interfere to produce two emerging beams [38]. For example, a dielectric
interface inside a cube or plate of glass splits a light beam into two. This situation may
be reversed by sending the two beams back to the cube (or plate) where they interfere
constructively to restore the original beam. However, if the phases of the two beams
are changed, then their mutual interference generates two emerging beams in general.
50 four beams might be involved, two incident light modes and two outgoing light
modes, and the splitting of just one beam is a special case. Therefore, the most
general theoretical beam splitter model is a four-port device, which is simply a “black
box” with two input and two output ports having certain mathematical and physical
properties [38]. See Figure 8 for a schematic of an ideal lossless four-port beam
splitter.

The beam splitter is quantum mechanically described by a simple unitary
transformation operator (or matrix), based on an analog transformation matrix in
classical optics," which mathematically transforms the two input light modes into the
two output light modes. This operator is unitary, which reflects the fact that a lossless
beam splitter conserves energy and that the total light mode intensity dd, +d, is an
invariant quantity. Since the incoming and the outgoing light modes are both
independent bosonic modes, their annihilation operators must satisfy the following

7 cassia opie, ha components of the transformatan mar of are bear spiteare spy tre
ransisiviy ond TSHGCE, Which Scout for th tanamision and reflection probabiies of tans S356ough the ass cube or ice
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bosonic commutation relations: [,.]=[4,,a.]=5,,, and[4.4] =[d.a.]=0.
where 8, (=1 if =m and 0if £ # m) is the Kronecker delta and the indices ({, m) are
integers (38).
A beam splitter is a four-port device not only in the case of two incoming light modes
interfering to produce two emerging light modes; a beam splitter is always a four-port
device. Even if only one beam is spit into two beams, if literally nothing behind the
Semitransparent mirror i interfering with the incident beam, quantum mechanically this
nothing means a vacuum state. The very possibility that the second light mode behind
the mirror might be excited makes a difference. The vacuum fluctuations carried by the
empty mode (and entering the apparatus via the so-called unused input portof the
beam spliter) do cause physical effects. Therefore, the vacuum fluctuations entering
the second (unused) input port of the beam splitter must always be assigned a formal
mode operator, ds, in order for the system to 1) conserve energy, 2) obey the beam
splitters aforementioned bosonic commutation relations and 3) guarantee that the two
outgoing beams are independent bosonic light modes

first input
a

second output
a

second input
ag

first output

&
Figure 8. Schematicofan Ideal Lossless Beam Splitter. Tuo
Incident spatstemporal lght modes (with the annilation operators 3:
anc 47) nerfer aptcaly 9 produce two amerg ng ght modes (wh
the annihilation operators d; and d}) (courtesy of UIf Leonhardt).

In Figure 9 we illustrate the effect of vacuum fluctuations for the case of a fictitious
beam spliter, which is a model for describing linear absorption or, equivalently,
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detection losses. The input signal is attenuated and, simultaneously, contaminated
by the vacuum fluctuations entering the second (unused) input port of the fictitious
beam splitter. The absorber acts lie a fictitious beam splitter, and when light is
attenuated it can be imagined as being split into a transmitted part and an absorbed
part. On the other hand, we know from the fluctuation-dissipation theorem that losses
are always accompanied by fluctuations [57]. At least the vacuum fluctuations of the
absorbing medium must be taken into account. In the simple absorber model, these
fluctuations come into play via the second (unused) input port of the fictitious beam
splitter as shown in Figure 9. The annihilation operator d of the partially absorbed
(input signal) mode is transformed by the fictitious beam splitter according to
&=0"G+(1-n)"d,, where the factor n (0 <n < 1) reduces the intensity of any initial
coherent state a) to |) after undergoing partial absorption, d is the output signal
mode that goes to the detector (which counts the number of photons it absorbs,

#'=@"d), and d2 is the mode operator of the vacuum fluctuations entering the second
(unused) input port of the fictitious beam splitter. The second term (1-n)'’d, in @' is
essential to guarantee that the attenuated light field remains a proper bosonic mode,
otherwise energy conservation and the aforementioned bosonic commutation relations
would be violated.
Finally, we note without further elaboration that the mode operators, quadrature wave
functions, and Wigner functions are all rotated through some angle under the action of
a beam splitter. And the Wigner function ofa signal is smoothed during absorption
under the actionof a fictitious beam splitter. This provides additional models to
develop the properties of other types of optical instruments and understand their
behavior on incoming light modes (or input signals).

signal

—_—D— ————> absorption
vacuum
az

detector

aa

Figure 9. llustrationof a Fictitious Beam Splitter.(caurtesyof UF Leonhardt)
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Photodiodes
Most photodetectors apply a version of the photoelectric effect to operate in which
incident light radiation ionizes a piece of photosensitive material in the detector and
produces freely moving electrons, i.e., an electric current is created that can be
amplified and handled by electronic means. A commonly used type of detector is the
iinear-response photodiode. In most cases, the photosensitive part of the detector is a
P-I-N structure, a sandwich of Positively doped, Intrinsic, and Negatively doped
semiconductor material. Commonly, silicon (i) or indium gallium arsenide (InGaAs)
are used where Si detects light out to a 1 pm wavelength and InGaAs operates in the.
range 0.19 um to 2.6 um. A bias voltage of about 10 Volts is applied to drain the
majority carriers (electrons in N and holes In P) out of the intrinsic zone. In this
depletion region an unstable situation is created for the minority carriers. As soon as
electron-hole pairs are present in the intrinsic zone, the bias voltage produces a current
that is proportional to the number of carriers. Electrons in the valence band are lifted
into the conduction band by the absorption of light radiation, i.e., the absorption of a
single photon lifts one electron into the conduction band, which creates electron-hole
pairs in the depletion zone. This process can be made highly efficient because the
applied voltage is very low 0 that no avalanche of charge carriers into the conduction
band (via collisions) is formed. The current response of the detector is linear in the
intensity of the detected ight. However, thermal fluctuations cause Nyquist noise in
the photocurrent. Thermal effects also create electron-hole pairs in the depletion zone
thus producing dark current, which Is electronic noise. Becauseofthis electronic noise,
linear-response photodiodes do not reach single-photon resolution. They are suitable
for relatively high intensities, greater than about 100 photons per microsecond.

‘There are inefficiencies and noise associated with realistic photodetection. A convenient
model to understand the effect these have on experiments is provided by imagining a
fictitious beam splitter placed in front of an ideal detector. See Figure 9. Only the
transmitted photons are counted, so that the transmissivityofthe fictitious beam
splitter corresponds to the detection efficiency. Dissipation is always accompanied by
fluctuations. These degrade the quantum noise propertiesofthe detected light. The
fluctuations are modeled by a vacuum entering the unused port of the fictitious beam
splitter. This analysis shows how the nonclassical features of light are lost when the
detectors are inefficient.

Balanced Homodyne Detection
Under idealized conditions the photon number is measured in direct photodatection.
However, another method of detection exists, in which the light field amplitudes (the
quadrature components) are measured instead of the quantized light intensity
Intensity (photon number) and field amplitude (quadrature) are distinct quantities.
There is no simple relationship between the photon statistics and the quadrature
distributions in the quantum regime, but the two are shown to be related via the
mathematics and procedures of quantum state sampling [38]. Furthermore, the field
amplitudes contain phase information, and so they are dependent on phase.
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Quadrature components d, are defined"™" with respect to a certain reference phase 0
that can be varied experimentally

‘The principle scheme of a balanced homodyne detector is depicted in Figure 10. The
signal interferes with a coherent laser beam at a well-balanced 50:50 beam splitter.
The laser light feld is called the focal oscillator (LO), and it provides the phase
reference f for the quadrature measurement. It is assumed that the signal and the LO
have a fixed phase relation, as is the case in most experiments applying homodyne
detection, because both fields are ultimately generated by a common master laser. The
LO should be intense with respect to the signal for providing a precise phase reference.
Its also assumed that the LO is powerful enough to be treated classically, ie., we
totally neglect the quantum fluctuations of the LO. After the optical mixing of the signal
with the LO, each emerging beam is directed to a linear-response photodiode. The
photocurrents /; and I> are measured, electronically processed, and finally subtracted
from each other. The difference current fu = I; ~ I is the quantity of interest because
it contains the interference term of the LO and the signal. It Is assumed for simplicity
that the measured photocurrents J; and J: are proportional to the photon numbers 7,
and A, of the beams striking each detector, which are given by , =d!'d; and
i, =/d, in termsofthe mode operators | =2"(d~a,,) and @} =2"*(a+a,,) of
the fields emerging from the beam splitter [38]. Here @ denotes the annihilation
operator of the signal and ao is the complex amplitude of the LO.

“The difference current I; is proportional to the difference photon number (assuming
perfect quantum efficiency) ity, =i,~ A, = Gy, +0,,d', where aj, is the complex

conjugate of ao. The phase of the LO is 8, and so we note from the definition of d,
that the measured quantity [zi is indeed proportional to Gy because iis, = 2" [ouldy,
which is a result that has been verified by more sophisticated theories of homodyne
detection [38]. A balanced homodyne detector measures ,. The reference phase 0 is
provided by the LO and can be varied by adjusting the LO using a piezo-electrically
movable mirror, for example. An experimental method for finding the scaling of do in
the difference current Jy is to keep a record of the sum current because the sum of fy
and Iz is proportional to oto leading order [38]. This can be experimentally
important because the intensity of the LO is usually an unknown quantity.

+" We note thatphaseshifting rotates the quodratures, do =U” (8)§U(6) = osB+ sind and
oy =U" (8)UB) = ~Gsind + jens, via the quadrature decomposition defined in Sect. 118-1 3nd the phase
Shing preperty of the anni aperator defined in Sec, 1-1.
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Figure 10. Schematic of a Balanced HomodyneDetector. (courtesya Of Leonhard)
Furthermore, the balanced homodyne detector is iso an amplifier. The LO amplifies
the signal by the mutual optical mixing of the two, In other words, the homodynedetector i an Interferometer that can be measurably imbalanced by a single photon in
the signal mode because the reference fied 1s very Intense. A very mporiant technical
advantageof this s that the ampified signal is well above the electronic noise floor of
the photodiodes. The signal amplitude is enhanced so that even the noisy near
response photodiodes can detect the quantum features of the signal with single photon
resolution. Because the LO serves as a coherent ampifier, it ais chooses the signal
mode. The LO singles out ane spatisl-temporal (bosonic) mode from the ret of theContinuous quantum field “ight that matches the Lo field). In this way the Gbserver
Separates the quantum object (a single optical mode) from the rest of the world, The
mode function Is Given by the spatial-temporal shape of the LO bean at the detectorSurface and during the measurement time Interval 0, 71. The overal phase and
intensity of the LO is comprised in the complex amplitude avo. Shifting the phase 0 =
2rg(auo) rotates the measured j,.. The observer defines via the LO the frame in space.
and time that is subject to the fied-quadrature measurement. By tailoring the shape of
the LO beam high spatil-temporal resolution can bc achieved.
Photodetection is usually not completely efficient in practice so i is important todescribe the influence of inefficencies on homodyne detection, This is easily done byusing the simple model or losses in direct phatodetection that was given in SectionHIB-2. We imagine fictitious beam splittersto be piaced in frontof the two (assumed
ideal) detectors in the measurement setup (see Figure 11). We use

2
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&=7"a+(1-)""4, from Section I11B-2 to define the annihilation operators of the

detected light modes ;=n";+(1-1)"*5, and a} =1"d}+(1-n)"b,, where b, and

b, are the annihilation operators of the vacua entering the second unused ports of the
fictitious beam splitters. The annihilation operators d; and dj describe the light modes
(or fields) emerging from the 50:50 beam splitter where the signal is optically mixed
with the LO. Again, the LO is an intense field compared with the signal so it can be
treated classically. Therefore, we do some algebra to compute the difference photon
number fi,=#3-Aj=a;-a}'a] , but retain only the leading terms with respect to

avo, and obtain the final result [38]:

ii =o[na(1)"8+ HO az

“The symbol HC in Eq. (12) denotes the Hermitian conjugate of the other part of an

expression and b=2" (5,5, ). The fluctuation mode operator 5 corresponds to the
optical mixing of the fictitious vacuum-noise modes b, and 5, and it obeys the bosonic
commutation relation[6 #1] =1 (e.g., see Sect. IlIB-2). Because the interference of

vacuum with vacuum yields vacuum, the fluctuation mode 5 can be regarded as a
bosonic mode, being in the vacuum state as well.
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Figure 1. Balanced Homodyne Detector sing Fictitiousmshibm AdSe Sri,
Equation (12) provides an additional model for detection losses. Similar to directDhoton carting.» heious vacuum ed has 6 be added to the aienuoted signal in
homodyne detection. This means that we can replace the arrangement of two fictitious
beam splitters in front of the photodetectors with just one effective beam splitter in
front of an ideal homodyne detector (see Figure 12). This effective beam splitter
actos for oer ke of osses edged rasmateh, whereby he quant
eects of both detection losses and mode mismatch are comprised in an efective 1.
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Figure 12. Balanced Homodyne Detector Using A Single EfectiveFEiious Beam Sper to Reema for Devechon Lovaes andTod whamaten Couren o UF aonpordy
The consequence of an effective 1 and Eq. (12) is that the marginal distributions
prig:0) must become a function of the effective T [38]

a ny
pra.0m)=[=(1-n)]"* [7 pr so) (=n 4) Jos, a3)

where the pr(x,8) inside the integral is defined by Eq. (10) and x is a dummy
integration variable. Equation (13) defines the measured quadrature histograms that
are used to build the transmission profiles in the tomographic process, which isEiscuased mth following section
‘Outline ofExperimental Procedure

The key process of quantum tomography s to picture the “shape” of a quantum cbiect
in phase space using the Wigner representation. The marginal distributions [Eq. (10)ar (13)] correspond to the tomographic transmission profies of the Wigner function
Wig, 1 to shadows projected oto a ne n quantum phase space. Because of the
Heisenberg Uncertainty brincile, we cannot measure Simultaneously and precisely theposition g and the momEntu p, and we cannot observe he Wigner fancton drectly 35
a probability distribution. However, we can measure the quadrature histograms [i.e.,
the frst ne in Eq. (10), and by varying the phase 6 we abserve the quantum object
under different angles. Given the pri¢,0), the mathematics of computerized
tomography can be applied to deduce the Wigner function.

2
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As discussed in the previous subsection, we can use balanced homodyne detection to

precisely measurethequadratures iof aspatial-temporal mode. As was also
discussed in the previous subsection, the angle 8 is defined by the phase of the local

oscillator with respect to the signal. The phase 0 can be varied using a piezo-electric

translator. To measure the quadrature distributions, one may fix 0 and perform a

series of homodyne measurements at this particular phase to build up a quadrature
histogram. Then the LO phase should be changed in order to repeat the procedure at a

new phase, and 50 on. Another possibilty is to monitor the phase while t drifts or to
Sweep ft Ina known way. In any case, the homodyne measurement must be repeated
many times on identically prepared light modes (or on a continuous wave field) to gain
Sufficient statistical information about the quadrature values ata certain number of
reference phases. Finally, the Wigner function is tomographically reconstructed from
the experimental data.
Its beyond the scopeofthis report to summarize the entire subject of experimental
quantum tomagraphy, ts mathematical basis and procedures of quantum state
sampling, and the corresponding algorithms and numerical recipes. The reader should
see Reference [58] for the excruciating details.

Balanced homodyne detectors with local oscillators are amplifiers capable of detecting
and quantifying vacuum and sub-vacuum fluctuations. This is the subject of the two
experimental approaches that wil be discussed in the next section.

BALANCED HOMODYNE SYSTEMS FOR MEASURING
NEGATIVE (SUB-VACUUM) ENERGY
Time-Domain Balanced Homodyne System

Squeezed states of liht, which are "darker than vacuum,” have regions with sub-
vacuum fluctuations. Slusher and collaborators [40, 41] and Robinson (42, 43] were
the first to experimentally observe these sub-vacuum regions. Numerous other
experiments followed, which employed variations on the experimental devices and
techniques used to generate squeezed light and measure its sub-vacuum fluctuation
pulses. Those early experimental devices later gave way to the development and use
of balanced homodyne detectors.
For example, Schneider et al. [59] describe their compact and efficient source of
amplitude-squeezed light, Their experiment used a semi-monolithic degenerate:
MgO: LiNbO3 optical parametric amplifier pumped by a frequency-doubled Nd:YAG laser

at 532 nm. They employed injection-seeding of the amplifier by a 1064 nm wave to

provide active stabilization of the cavity length and stable operation. At a pump power
Gf 380 mW, their device detected a maximum noise reduction of 6.5 dB in the
amplitude fluctuationsofthe 0.2 mW 1064 nm wave, while the average detected noise
reduction in continuous operation over 14 minutes was 6.2 dB. They reported a
Squeezing of 7.2 dB in the emitted wave.
However, mostofthese early and more recent series of balanced homodyne detector
(BHD) measurements have been performed in the frequency domain. A significant

ES
UNCLASSIFIED//FOR-OFFISIt-USE-ONEY



UNCLASSIFIED//F@R-@PFECHAOB-ONty

drawback of this approach s that it reveals Information about the quantum state onlyWithin the sideband chosen for the measurement. Therefore, the method isincompatible with other techniques for characterizing 3 quantum state for which such
precise selection of spectral modes is impossible. Time-domain BHD resolves thisfimitation. Hansen et al. [4] describe their experimental tme-domaln BHD device.They developed a puised BHD for precise measurement of the leciric field quadratures
of pulsed optical quantum states. A high level of common mode suppression (> 85 dB)and low electronic noise (730 electrons per pulse) In their device provides a Signal-to-noise ratio of 14 dB for measurement of the quantum noise of indvidual patsee, Theirdevice achieved a signal-to-noise ratio of 14 dbat 3 pulse repetition rateof up to 1 Miz,enabling high-accuracy quantum measurements to be carried out in a short time, Thay.performed a quantum tomography of the coherent state as a test for thei device, andthe Wigner function and density matrix were reconstructed with 89.5% fdelty whiletheir detector exhibited 91% quantum efficency. Ther detection system can iso beusedfor utrasensitive balanced detection in continuous wave mode. Figure 13 shows aschematico their time-domain BHD. The igure shows two polarizing bear spiter
(785) cubes, a 50:50 beamsplitter (BS), two half-wave plates (1/2), to photodiodesleft-side in dotted box), and the signal processing electronics Inside he dated box.

PBS fessor eee enero eee
Ry } iy polezero  lospass

xX differentation filter i2 A250 A275 Ars,outV, SHE Sey BR
5 IR i :> o 1XX 12v - iBE EL or crsrersemmserssensenmemesiinnk

Figure 13. Time-Domain Balanced Hamodyne Detector. (courtesy of 7. Lodahl
As we discussed previously in Sections 118-4 and ITT8-5, to perform BHD one overlapson a beam spiter the electromagnetic wave whose quantum state 1s t be measuredand a relatively strong LO wave in the matching optical mode. The two fields emergingfrom the beam spilter are incident upon two high efficiency photodiodes whose outputphotocurrents are subtracted. The photocurrent difference is proportional o the value
of the electric field operator E, in the signal mode, where 0 is the relative optical
phaseofthe signal and the LO. In traditional frequency-domain BHD, one uses a
certain frequency component of the difference signal to determine the quadrature
quantum noise of the optical state. The measurement frequency is normally chosen to
be approximately 5 to 10 MHz where the technical noise is minimized. Figure 14 shows
an example of experimentally measured data fora typical (undisturbed) vacuum stateand a Squeezed vacuum state using a time-domain BHD system.
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Figure 14, Experimentally Measured Squeezed State, (courtesy of P.Tareck This graph of vacum dB hls ve. relative optical phase ange showsan experimental messared squeezed state (lot (1 and 3 normal(uncstriec) vacuum state (rot (0), The deep vallys with negative dBValues in plo (1 re Sub-vacyum 160na wih 5bVacs (neGaEve) energyGani (sos alo, Figure1 for3 comparison).
‘When applied to pulsed sources, the frequency-domain BHD technique implies that
averaging over many individual laser puises takes piace. However, in time-domain BHD,
each laser pulse generates a signal that is observed in real time and yields a single
Value of field quadrature. Repeated measurements of a large number of laser pulses
produce a quantum probability distribution associated vith this quadrature. When
transform-limited LO pulses are used, time-domain BHD gives the complete information
about the quantum state in the spatial-temporal mode that matches that of the LO.

Hansen et al. [4] point out that time-domain BHD is technically challenging, because 1)
the electronics must ensure time resolution of individual laser pulses and 3) the
measured quadrature values must not be influenced by low-frequency noise. The
detector must provide ultralow noise, high subtraction, and a flat amplification profile in
the entire frequency range from DC to at least the LO pulse repetition rate. See
Reference [4] for a complete description of their device as shown in Figure 13.
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Balanced Homodyne System for Casimir Cavities

What has not been experimentally measured yet are the sub-vacuum fluctuations and
ther (negative) energy density inside a Casimir cavity. Marecki (5,6 theoretically
evaluated the use of BHD for this purpose. He proposed that a BHD can be used to
detect and spatially map the sub-vacuum fluctuation region inside a Casimir cavity as
well as measure its negative energy density spectrum. _Marecki discovered that by
exploiting a trick with the subtraction of the output of balanced photodiodes, it is
possible to quantify the fluctuations of the quantum field (even in the vacuum), which
Uniquely addresses Davies and Otte [54] negative energy detector hypothesis.

“The quantity of interest (to be measured) is the fluctuations of the quantum electric
field (E, (fr)(fr) (for fields restricted to the frequency @ of the local oscilator)

Lo
for squeezed and vacuum states, where £(%,1) is the quantum electric field operator
(in ground-state representation and restricted in frequencies) at the point ¥, £re
represents the time-dependence of £(x.1), and (..)s stands for the expectation value

with respect to an arbitrary intial state S (vacuum, squeezed, ground state, coherent,
thermal, etc.) of the quantum radiation field under study. (E(%.1),(k.1)) is also
called a two-point function. In quantum field theory, the expectation value (or matrix
element) computed by inserting a product of two quantum operators between two
states, usually the vacuum states, is called a two-point function. This quantity
suggests a “relation” between two states In the same dynamics, and it expresses the
fluctuations of a quantum field. The product of n-operators is called the -point
function which expresses the higher moments of the quantum field fluctuations.

The goal of the experiment is that a state of the quantum radiation field under study
needs to be characterized by its n-point functions. The typical solution in quantum
optics is to use well-characterized quantum systems interacting in a simple way with
the quantum radiation field. The detection scheme uses the simple model of a PIN
Junction photodiode in which a single electron interacts with the quantum radiation field
under study. This simple interaction means that the state space of the electron can be
severely restricted, the interaction is assumed to be linear in the quantum field, and so
the Born approximation can be used (5, 6]. The PIN junction model of the
photodetection process is an electron in an inital state [0)@S, with its bound-state |0)
well-localized around a certain point %,, that gets excited to the continuum of
scattering states [§) by the quantum field state of interest such that the final states
of the system are [§)@5 .*** The excitation is caused by the linear (dipole
approximation) interaction with the quantum electric field which is

71 Tnesymbel ©denotesthe tensorproduct of twocuartumeigenstates such tht [a,,,) = a,) a.) for
factorized eigenstates whieh carespend to independent measurements.
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Fy =ex' @E,(5,1) o g(r) where & is the electron charge and g(£) is a smooth test
(or smearing) function that is equal to 1 during the measurement and smoothly
vanishing elsewhere. Using first-order time-dependent perturbation theory, Marecki (5,
6] derived the probabilty of excitation:

nop J a,
Pocl(g0)=]. rds g®26)G" r-n)(E yh) Lae- s

where G(r —5)= [dg (0]x'(r){)(§]'()]0) is the electronic two-point function, 7 and

s are dummy time and integration variables, and [drdsg(r)g(s) is the temporal
sensitivity in the measurement process.
“The balanced homodyne detector consists of an arrangement of two photodiodes,
‘whose outputs are subtracted, and illuminated with an auxiliary coherent state of the
radiation field (i.e., the local oscillator, LO; see Figure 15). Per the discussion in
Section I11B-4, the LO is used as a tool to investigate the properties of a certain state S
of the quantum radiation field under study, and so on a BHD the state S is optically
mixed with the coherent LO state (see References [5] or [6] for further details). The
quantum field S de-balances the detector (stochastic process of measurement). The
‘expectation value of the observable corresponding to the electronic charge collected at
the point P in Figure 15 (i.e., the BHD current) is thedifferenceofexcitation
probabilities of the two photodiodes [5, 61: (J), = Pa.(§+4)~Puc(£3), where positions
k and } correspond to the positions x and y in Figure 15. Further calculations and
other theoretical considerations lead to the following final result for (J), 5, 6):
(7); =a,» Elo. # (Ei)+E,())| where er depends on the electronic structure

of the PIN semiconductor in the photodiode, Ej, is the electric field of the LO
(corresponding to F in Figure 15), to is the LO phase that can easily be varied in
experiments, and all field operators (X,1) are restricted to the frequency ® of the LO.
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If (7), vanishes, then the variance of the BHD-output is (17), which provides a
characterization of the two-point function of the state S. The variance is 5, 6):

1 Corgi BL EE War oar(42), =ateElyElo,C+Ep|£5a+,Gu0)) . as

whereEl,El, is the powerof the LO field. This expression shows that (J?) scales
quadratically with the amplitude of the electric field of the quantum state S under study
and thus linearly with the power of the LO field. The two-point functions can be
quantitatively estimated by performing measurements with different powers of the LO.
‘Therefore, BHDs with local oscillators are amplifiers that are capable of measuring the
one- and two-point functions of arbitrary states of quantum fields (even for the
vacuum).
For an experimental study of the vacuum state inside a Casimir cavity, the stationary
state is specified to be the ground state (Grd) and thus the one-point function (J),
vanishes. For stationary states the (/%)_ is related to the spectral density
,(®,%,3) which is defined as the Fourier transform of the two-point function
(E(t)E(31), with respect to time; therefore, we have for ground states [5, 6]

2 f Li, 2(72), =e (Elo) [d6bo, 6k)|e(@o) 16)

38
UNCLASSIFIEDH-OR-ORRGiniie-ailinte



UNCLASSIFIED/ARQR-GFEFIGIA tOm-ONTT—

where §(w) is the Fourier transform of g(r) and is sharply peaked around  =0. In

general, almost al results of quantum fied theory in a vacuum state or under the
influence of external conditions (i.e, in vacuum states deformed” by boundary
conditions or external fields) are derivable from the spectral density. This quantity is
usually known analytically, and itis of great interest to measure It for interesting
quantum field states.

Because the ground state is stationary, the quantum noise in the Casimir cavity is time-
independent, i.., tis independent of the phase of the LO, and thus the spectral
density is also time-independent. Marecki [5, 6] derived the diagonal part of the
spectral density for the y-components of the quantum electric field between two
parallel, perfectly conducting plates (positioned at x0 and « =a) in a Casimir cavity
(see Figure 2):

roo ¥Op (@.X,%)=a2[Qn QI2x-nLD)] an

for y=0, where L = 2a is twice the distance between the plates and the function Q(x) is
defined 25

sinx| cosx _sinx= SIXCos _sinxKrab
Note that the diagonal terms of the spectral density are the important quantities to be
measured because they will be dominant f the photodiodes are separated by a
sufficiently large distance [S, 6]. Spectral densities reveal much finer details of the

quantum ground state than already-measured Casimir forces do. By exploring the
freedomof choosing the locations of the photodiodes inside the Casimir cavity as well
as the polarizations, phases and frequencies of the LO, one can obtain a detailed

characterization of one- and two-point functions of any state S of the quantum electric
field. Therefore, an application of this particular type of BHD measurement, via
Equations (16) and (17), amounts to a tomography of the ground state of the Casimir
cavity.
For the experimental detection of the Casimir spectral density with a BHD-type device,
the Casimir cavity plates are separated by a = 1 micrometers while the photodiodes
inside it are of submicrometer width in the x-direction and submillimeter length in the
y-direction (see Figure 16). Photodiodes of several nanometers in size have already
been constructed and thei high quantum ficiency versions are under development,
see Reference [60] and the references cited therein for more technical information. As
Shown in Figure 16, a coherent state in the TET mode of the Cosimir cavity with a very
small wavenumber in the y-direction provides an appropriate LO. A BHD with such a
LO and the photodiodes located s shown in Figure 17 would be sensitive only to the y-
componentofthe quantum electric field. Figure 18 shows a schematic of the BHD
apparatus with a LO. In the figure, the linearly polarized signal fieldS (if present) is

optically mixed with a coherent state (LO), which is polarized orthogonally to S, on the
polarizing beam splitter (PBS1). The half wave plate (HWP) reflects the planes of
Polarization with respect to its optical axis, thereby inducing a x/4 shift of the plane of
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polarization of the signal field S. The subsequent PBS2 separates the two orthogonally
polarized signals, which are detectedat the photodiodes PDx and PDy. The charge
collected at pointV (corresponding to point Pn Figure 15) provides a measure of
(J), (@nd its higher moments). Note that the setup is arranged in such a way, that if
S happened to be a monochromatic coherent state, then ft would be phase-matched to
the LO at the point x, but shifted in phase by at the point y.

Figure 19 displays Marecki’s computer model plot of the predicted Casimir spectral
density as a function of the distance from the plates x and the frequency o. For a
comparison with quantum optics fterature, he plotted the normalized diference
between the vacuum and ground state spectral density in the figure (see References [5S]
and [6] for more detail). Note in the figure that for o < 7C/a, the Casimir spectral
density vanishes: o,,(®, %,X) =0, while discontinuities in it appear at © = nrc/a.
Figure 20 displays the corresponding computer model plot by Marecki of the predicted
suppressed vacuum fluctuations in the ground state relative toundisturbed”vacuum
fiuctuations (in absence of the plates) in dB, 10L0g,,[0,(®. &. ¥)/o,(0.5 5]
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Figure 16. Diagram of Casimir Cavity with BHD Photodiodes. (courtesy ofTaree)
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The predicted spectral density pattern shown in Figure 19 is static i.e, its
independent of the LO phase and in some regions corresponds to the suppression of
vacuum fluctuations by at least 3 dB. Such a behavior is allegedly forbidden by atheorem known 5 the Quantum Inequalities for quantum fields without external
conditions (.., “undeformed,” or “undisturbed, vacuum states). The theorem statestha regions with sub-vacuur fluctuations musk be followed by regions with greatlyincreased vacuum fluctuations no matter what the state of the quantum field is. Thishas only been verified for single-mode squeezed light, see, .4., Figures 1. and 14. A
‘major consequence of this theorem is that sub-vacuum fluctuations, and theirCorresponding sub-vacuum (negative) energy density, cannot persiet or long times.What i surprising here i that Mareck! (private communication, Leipzig University,Germany, 2010) claims that the Quantum Inequalities should also apply to the case ofstatic sub-vacuum fluctuations, and their Corresponding Static Sub-vecuum (negative)energy density, inside Casimir cavities. The efficacyofthe Quantum Inequalities
theorem in its application to curved spacetime physics, and more specifically faster-than. ight spacetime geometrios, has been argued i the erature in which serioustheoretical shortcomings of the theorem have been ientiied by several investigators
(see Reference [1] for the details). Therefore Marecki's proposed Casimir cavity BHDexperiment provides a possible test of yet unexplored generic quantum fied theoretic
effects in Casimir geometries, complementary to measurements of Casimir forces. WeRope that experimental attempts to verity hi predictions will low
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CONCLUSION

Future aerospace platforms may have propulsion systems that modify their surrounding
spacetime geometry to implement faster-than-light spaceflight (via traversable
‘wormholes or warp drives) or produce levitation via antigravity. To engineer such a
modification of local spacetime requires the use of quantum sub-vacuum fluctuations
and their associated sub-vacuum (or negative) energy density. There are two key
examples of specially prepared quantum vacuum states that are known to produce
Small amounts of sub-vacuum (negative) energy density in the laboratory. These are
the well-known Casimir effect and squeezed light. There are several other examples of
special quantum vacuum states or particle states that produce sub-vacuun (negative)
energy density, but they are stil under theoretical study.

We already make small amounts of sub-vacuum (negative) energy in the laboratory via
the Casimir effect and squeezed light, but we do not yet know if we can access larger
‘amounts for extended periods of time over extended spatial distributions. The
Quantum Inequalities theorem suggests that producing large amounts of sub-vacuum
(negative) energy in “deformed” vacuum states for extended periods of time in flat or
curved spacetimes may not be possible. This claim remains as yet untested by
experiment while several investigators have strong arguments showing the theorem is
in error in these particular cases.

Quantum optical homodyne tomography can detect and quantify the fluctuations in a
variety of ("undisturbed") vacua as well as the sub-vacuum fluctuations found in both
squeezed light and Casimir cavities. Squeezed light has time-dependent, altemating
regions of sub-vacuum fluctuations (a.k.a. two-point functions) of the quantum electric
field. Casimir geometries provide environments with non-trivial position and
frequency-dependent, time-independent, often sub-vacuum fluctuations (two-point
functions) of the quantum electric field. Balanced homodyne detectors (BHD) with local
oscillators are amplifiers that are capable of providing detailed measurements of the
Sub-vacuum fluctuations (the two- and n-point functions) of the states of the quantum
electromagnetic field.

Nearly a decade ago, Hansen et al. [4] reported on their experimental time-domain (or
pulsed) BHD device that they developed to make precise measurementsofthe quantum
electric field quadrature of pulsed optical quantum states (e.g., squeezed light). A
master laser produced the local oscillator for this device. The device demonstrated a
high level of common mode suppression and low electronic noise, which provided large
enough signal-to-noise ratio to measure the quantum noise of individual pulses. The
device exhibited over 90% quantum efficiency. However, their device was not designed
to directly measure the energy density of the individual pulses. We recommend that a
research and development program be implemented to modify the design and operation
of the time-domain BHD device in order provide this important data. It will be
necessary to develop and commercialize a portable time-domain BHD device for the
purpose of detecting, measuring, and spatially mapping the sub-vacuum (negative)
energy regions produced by a putative pulsed (or "AC) negative energy generator that
might be used for engineering the spacetime surrounding an aerospace platform for
propulsion purposes. A number of modified time-domain BHD devices could also be
assembled in a sensor array for surveillance and detectionof any anomalous aerospace
platforms that might use engineered spacetime effects for propulsion.
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What has not been experimentally measured yet are the sub-vacuum fluctuations andthelr corresponding sub-vacuum (negative) energy density inside a Casimir cavity.Casimir cavities produce static, or time-independent, sub-vacuurn fluctuations and(negative) energy density. Marecki 5, 6] proposed a modified BHD and computed thetwo-point function and the associated Spectral density for the ground state of thequantum electric field in Casimir geometries, and predicted a position- and frequency-dependent pattern of BHD responses if a device of this type is placed inside a Casimircavity. He discovered that by exploiting a trick with the subraction of the output oftwo balanced photodiodes, it Is possible to quantify and map the sub-vacuumfluctuations of the quantum field and its corresponding energy density inside the cavity.His modified BHD design uses the electric field of the TE1 made of the Casimir cavity asthe local oscillator. Marecki also discovered that the sub-vacuum (negative) energydensity regions inside a Casimir cavity violate the Quantum Inequalities theorem. Werecommend that an experimental program be implemented to test Marecki's modifiedBHD and his predictions for Casimir geometries. Using this device to also test theefficacyof the Quantum Inequalities theorem is a necessary part of the proposedexperimental program. If such experiments are successful, then it will be necessary tofollow up by implementing a program to develop and commercialize a portable*moified-Marecki BHD” device for the purpose of detecting, measuring, and spatially
mapping the sub-vacuum (negative) energy regions produced by a putative static (or*DC’) negative energy generator that would be used for engineering the spacetimesurrounding an aerospace platform for propulsion purposes. Because the Casimir effect
and its associated negative energy are incredibly feeble, such putative propulsionsystems will not involve the use of Casimir cavities to produce a free-space distributionof negative energy surrounding the platform. Therefore, a modified-Marecki BHD willrequire a high quality laser for the local oscillator and the photodiodes are allowed to bemuch larger in size. A number of modified-Marecki BHD devices could also beassembled in a sensor array for surveillance and detection of any anomalous aerospaceplatforms that might use engineered spacetime effects for propulsion.
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