COMMUNITY SAFETY REPORTS UPDATE

Safety and Operations Council February 18, 2022

ACTION REQUESTED

No action requested at this time. This item is for presentation and discussion.

PREVIOUS ACTION

None

SAFETY PROGRAMS

Goal: Vision Zero – Zero Deaths or Serious Injuries

Current Safety Improvement Programs:

New Addition:

SAVE Plan

SAVE Plan emphasis areas:

- 1. Intersection
- 6. Older Driver
- 2. Roadway Departure 7.
- 3. Young Driver
- 4. Speed
- 5. Impaired Driving

- **Distracted Driving**
- 8. Pedestrian
 - 9. Motorcycle
 - 10. Bicycle

Safe Routes to School (SRTS)

Systemic Safety Management

(Complement to current safety programs)

SYSTEMIC SAFETY MANAGEMENT

Systemic safety = managing risk across an entire roadway system as opposed to certain locations

 Crash data alone is not always sufficient to determine which countermeasures to implement

SYSTEMIC SAFETY MANAGEMENT

This approach is intended to:

- Program implementation of safety treatments at sites that reduce the potential for crashes
- Address crash types that occur with high frequency across the roadway network, but are not concentrated at individual locations
- Program countermeasures for implementation at locations which may not have a history of crashes

A proactive approach based on the Highway Safety Manual

SYSTEMIC SAFETY MANAGEMENT

Implementing Safety treatments at Sites that Reduce the potential for Crashes using:

- Highway, street, and intersection characteristics in the absence of high-quality site level crash data
- Crash Prediction Models
- Safety Performance Functions (SPF)
- FHWA Crash Modification Factors (CMF)

NOACA will Produce biennial Community Safety Reports

PROCESS

Collect roadway attributes for each arterial and intersection

Apply <u>HSM</u> equations and factors

Predicted average crash frequency

Calibration

Collect

current crash

data

Including vehicle-vehicle, vehicle-pedestrian, vehicle-bicycle crashes Total expected average crash frequency

5-33

City/Village

Major & minor

arterials

ARTERIALS

5-33

DATA INPUT

Roadway segments (Arterials)

Example: Bay Village

		PREDICTED MO	DELS FOR URBAN & SUB	URBAN ARTERIAL ROADWAY	SEGMENTS - D				
SECTION #	ROAD NAME	FROM	то	FUNCTION CLASS	NUMBER of LANES	LENGTH (Miles)	Number of Driveways	SEGMENT TYPE	AVERAGE DAILY TWO- WAY TRAFFIC VOLUME
6100	BASSETT RD	WESTLAKE NCL	LAKE RD (US-6)	MINOR ARTERIAL	2	1.08	20	20	3,102
3340	CLAGUE RD	I-90 NORTH RAMPS	LAKE RD (US-6)	MINOR ARTERIAL	4	0.41	20	4U	5,850
22351	SR 252	WESTLAKE NCL	LAKE RD (US-6)	PRINCIPAL ARTERIAL-OTHER	2	0.58	20	2U	2,798
	US 6	CUYAHOGA COUNTY WCL	BRANDON PL	PRINCIPAL ARTERIAL-OTHER	2	5.33	100	2U	5,596

Intersections (Arterial-Arterial)

	PREDICTE	D MODELS FOR URBAN & SU	BURBAN ARTERIAL INTER	RSECTIONS - DATA INPUT	
MAJOR RD	MINOR RD	INTERSECTION TYPE	AVERAGE DAILY TWO_WAY TRAFFIC VOLUME FOR MAJOR RD	AVERAGE DAILY TWO_WAY TRAFFIC VOLUME FOR MINOR RD	PEDE STRIAN ACTIVITY
US 6	BASSETT RD	351	5,168	3,103	LOW
CLAGUE RD	US 6	3SG	5,850	4,678	LOW
US 6	SR 252	3ST	4,678	2,798	LOW
				-	

CALIBRATION PROCESS - METHODOLOGY

Calibration: adjusting the predicted values based on real crash data in order to make the numbers more applicable to the conditions specific to our region

- 1. County
 - County characteristics
- 2. VMT of arterials
 - Categorize jurisdictions by creating a
 Normally Distributed VMT set
- 3. Ratio of actual and predicted crashes
 - Apply ratio to each predicted value

Ratio: Actual Crashes

Normal Distribution:

CALIBRATION PROCESS

Cuyahoga County

NOACA Lake Cuyahoga Lorain Medina G R E A T E R CLEVELAND

CALIBRATION PROCESS

Geauga County

Medina County

CALIBRATION PROCESS

Lake County

Lorain County

C = Calibration Factor

EXPECTED CRASHES

Expected crashes (with calibration factor already applied) Crash Data AVERAGE CALIBRATION CRASHES FACTOR Average of Segment Length PER YEAR ROAD NAME 2018 & 2019 1 mile BASSETT RD 3.03 2.168 7.5 CLAGUE RD 0.5 mile 3.03 2.332 3 SR 252 3.03 1.191 7 5 miles 19.403 US 6 3.03 28 **Calibration factor** Actual crashes

- 1. Jurisdiction Background
- 2. Definitions and Predictive Models
- 3. Inputs and Coefficients of Safety Performance Functions (SPF)
- 4. Predicted Crash Outputs
- 5. Summary of Priority Corridors and Intersections

1. Jurisdiction Background

2. Definitions and Predictive Models

Predictive Models for Urban & Suburban Arterial Roadway Segments

 $N_{predictedrs} = C_r \times (N_{br} + N_{pedr} + N_{biker})$

Where:

 $N_{predictedrs} = Predicted$ average frequency of an individual roadway segment for the year of 2020

 N_{br} = Predicted average frequency of an individual roadway segment (excluding vehicle – pedestrian and vehicle – bicycle collisions)

 $N_{biker} = Predicted$ average frequency of vehicle – bicycle collisions for an individual roadway segment

 $N_{pedr} = Predicted$ average frequency of vehicle – pedestrian collisions for an individual roadway segment

 C_r = Calibration factor for roadway segments of a specific type developed for use for a particular geographical area

THE CITY OF BAY VILLAGE COMMUNITY SAFETY REPORT 3. METHODOLOGY AND DEFINITIONS A Predictive Method for Estimating Crash Frequency and Duration **Roadway Segment Types** Two-lane undivided arterial (2U) - a roadway consisting of two lanes with a continuous cross-section providing two directions of travel in Three-lane arterials (37) - a roadway consisting of three lanes with a continuous cross-section providing two directions of travel in which Four-lane undivided arterials (4U) - a roadway consisting of four lanes with a continuous cross-section providing two directions of travel Four-lane divided arterials (i.e. including a raised or depressed median) (4D) - a roadway consisting of two lanes with a continuous cross-section providing two directions of travel in which the lanes are physically separated by either distance or a barrier. Five-lane arterials including a center TWLTL (57) - a roadway consisting of five lanes with a continuous cross-section providing two Three-leg intersection with stop control (3ST) - an intersection of a urban or suburban arterial and a minor road. A stop sign is provided Three-leg signalized intersection (3SG) - an intersection of a urban or suburban arterial and a minor road. Signalized control is provided Four-leg intersection with stop control (4ST) - an intersection of a urban or suburban arterial and two minor roads. A stop sign is provided Four-leg signalized intersection (4SG) - an intersection of a urban or suburban arterial and two minor roads. Signalized control is provided

5 | Page

DEFINITIONS AND PREDICTIVE MODELS

3. Inputs and Coefficients of Safety Performance Functions (SPF)

Table 1: 2022 Bay Village Arterial Segment - Data Inputs

PREDICTED MODELS FOR URBAN & SUBURBAN ARTERIAL ROADWAY SEGMENTS - DATA INPUTS								
ROAD NAME	FROM	то	FUNCTIONAL CLASS	NUMBER OF LANES	LENGTH (MI)	NUMBER OF DRIVEWAYS	SEGMENT TYPE	AVERAGE TWO-WAY TRAFFIC VOLUME
BASSETT RD	WESTLAKE NCL	LAKE RD (US-6)	MINOR ARTERIAL	2	1.08	20	20	3,102
CLAGUE RD	I-90 NORTH RAMPS	LAKE RD (US-6)	MINOR ARTERIAL	4	0.41	20	4U	5,850
SR 252	WESTLAKE NCL	LAKE RD (US-6)	PRINCIPAL ARTERIAL-OTHER	2	0.58	20	20	2,798
US 6	CUYAHOGA COUNTY WCL	BRANDON PL	PRINCIPAL ARTERIAL-OTHER	2	5.33	100	20	5,596

Table 2: 2022 Bay Village Arterial Intersections - Data Inputs

25	PREDICTED MODELS	FOR URBAN & SUBURBA	N ARTERIAL INTERSECTI	ONS - DATA INPUT	
MAJOR ROAD	MINOR ROAD	INTERSECTION TYPE	AVERAGE DAILY TWO-WAY TRAFFIC VOLUME OF MAJOR ROAD	AVERAGE DAILY TWO-WAY TRAFFIC VOLUME OF MINOR ROAD	PEDESTRIAN ACTIVITY
US 6	BASSETT RD	3ST	5,168	3,103	LOW
CLAGUE RD	US 6	3SG	5,850	4,678	LOW
US 6	SR 252	3ST	4,678	2,798	LOW

4. Predicted Crash Outputs

5. 2022 PREDICTED CRASH OUTPUTS

Table 3: Arterial Crash Prediction Results

ROAD NAME	CRASH DATA – 2018 AND 2019 AVERAGE	CALIBRATION FACTOR	AVERAGE PREDICTED CRASHES PER YEAR
BASSETT RD	7.5	3.03	2.2
CLAGUE RD	3	3.03	2.3
SR 252	7	3.03	1.2
US 6	28	3.03	19.4

Table 4: Totals Crashs Predicted for Bay Village Principal Arterials

TOTAL PREDICTED	TOTAL AVERAGE
AVERAGE CRASHES PER	CRASHES IN 2018 AND
YEAR	2019
33	42

NOACA Lorain Medina Lorain Lorain

NEXT STEPS

 Staff will continue work on a community safety report format and template and proceed with creation of reports for all jurisdictions.

NOACA will **STRENGTHEN** regional cohesion, **PRESERVE** existing infrastructure, and **BUILD** a sustainable multimodal transportation system to **SUPPORT** economic development and **ENHANCE** quality of life in Northeast Ohio.

